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Abstract

We propose a two-step machine learning algorithm—the Supervised Adaptive Group
LASSO (SAGLasso) method—that is suitable for constructing parsimonious return pre-
dictors from a large set of macro variables. We apply this method to government bonds
and a set of 917 macro variables and construct a new, transparent, and easy-to-interpret
macro variable with significant out-of-sample predictive power for excess bond returns.
This new macro factor, termed the SAGLasso factor, is a linear combination of merely
30 selected macro variables out of 917. Furthermore, it can be decomposed into three
sub-level factors: a novel “housing” factor, an “employment” factor, and an “inflation”
factor. Importantly, the predictive power of the SAGLasso factor is robust to bond
yields; namely, the SAGLasso factor is not spanned by bond yields. Moreover, we show
that the unspanned variation of the SAGLasso factor cannot be attributed to yield mea-
surement error or macro measurement error. The SAGLasso factor therefore provides a
potential resolution to the spanning controversy in the macro-finance literature.
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1 Introduction

A growing literature has documented that excess returns of U.S. Treasury bonds are predictable.

For instance, the predictors found thus far include forward rates (Cochrane and Piazzesi 2005)

and yield-based variables constructed by using filtering (Duffee 2011),1 as well as macroeconomic

variables (e.g., Cooper and Priestley 2009; Ludvigson and Ng 2009). One debate in this literature

is whether macroeconomic fundamentals have any such predictive power conditionally over bond

yields. Among other things, this debate has important implications for macro-finance term structure

models (MTSMs; see, e.g., Joslin, Priebsch, and Singleton 2014 (hereafter JPS)).

In this paper, we construct a new macro factor with strong and robust predictive power for bond

risk premia using a two-step machine learning algorithm, termed the Supervised Adaptive Group

LASSO (SAGLasso) method. We obtain the new macro variable (referred to as the SAGLasso

factor) by applying the SAGLasso algorithm to a panel of 131 macro variables (along with six

of their lags)—a total of 917 (131 × 7) macro variables—that are adjusted for data revisions and

publication lags. In addition to its predictive power, the SAGLasso factor has two other noteworthy

features. One is that the factor is parsimonious, transparent, and easy to interpret. The SAGLasso

factor is a linear combination of merely 30 selected variables out of 917. Furthermore, it can be

decomposed into three sub-level factors: a novel “housing” factor, an “employment” factor, and an

“inflation” factor—which consist of 13, 11, and 6 macro variables, respectively. The other feature

is that the SAGLasso factor is unspanned. Intuitively, this means that the SAGLasso factor is

not subsumed (spanned) by yield factors in either predictive regressions or MTSMs. As such,

the SAGLasso factor can potentially help resolve the spanning controversy in the macro-finance

literature—the debate on whether macro-based return predictors are spanned or not.

We begin our analysis by describing the two-step SAGLasso method, followed by its imple-

mentation using the panel of 131 macro series. We construct eight sub-level factors—such as the

1See also Fama and Bliss (1987), Stambaugh (1988), and Campbell and Shiller (1991).
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“housing,” “employment,” and “inflation” factors—in the first step and then the SAGLasso factor

in the second step of the procedure. Note that we control for contemporaneous yields in both steps

to minimize the information overlap between the SAGLasso factor and the yield curve.

Next, we examine the conditional predictive power of the SAGLasso factor for bond risk premia

by testing two hypotheses. The first one, Spanning Hypothesis I, states that macro variables have no

incremental predictive power over the current yield curve, the first three principal components (PCs)

of yields. The second one, Spanning Hypothesis II—a stronger version of the first hypothesis—posits

that macro variables have no incremental predictive power over the filtration generated by the yield

curve, proxied by the first five yield PCs filtered from a dynamic term structure model. Our results

from both in-sample and out-of-sample tests strongly reject the two spanning hypotheses when the

SAGLasso factor is the sole macro variable used. These results indicate that the SAGLasso macro

factor has significant incremental predictive power, over price-related information in the Treasury

market, for future bond returns. Furthermore, we provide evidence that this predictability can

generate significant economic gains for investors.

Lastly, as an important application of the SAGLasso factor, we revisit the spanning controversy.

Given that the SAGLasso factor has strong predictive power for bond risk premia yet is weakly

correlated with the current yield curve, the new macro factor may shed light on the controversy.

To this end, we examine three aspects of the controversy using the JPS framework for MTSMs.

First, we show that the conditional predictive power of the SAGLasso factor is robust to finite

sample tests. Second, we focus on part of the spanning controversy formulated under the MTSM

framework and test the macro-unspanning hypothesis (MUH), which says that a given MTSM’s

macro state variables are not spanned by its yield factors.2 We find that when an N -factor MTSM

with 4 ≤ N ≤ 6 includes the SAGLasso factor as its sole macro factor, our likelihood ratio tests do

not reject the MUH, thereby presenting statistical evidence on the relevance of unspanned MTSMs.

Third, we provide confirmative evidence that the temporal variation in the SAGLasso factor is not

2Such models are referred to as unspanned MTSMs. Models with spanned macro risks are called spanned models.
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spannned/explained by the current yield curve. Importantly, this result is robust to measurement

errors in yields or in the SAGLasso macro variable itself. Taken together, these findings suggest

that the SAGLasso factor provides a potential resolution to the spanning controversy.

To summarize, this study contributes to the macro finance literature in three dimensions. First,

it is among the first to introduce a machine learning algorithm suitable for constructing parsi-

monious return predictors from a large set of macro variables. Second, using this algorithm we

construct a new, easy-to-interpret macro variable that has strong out-of-sample conditional predic-

tive power for bond risk premia. Moreover, unlike commonly used macro variables in the literature,

the SAGLasso factor is unspanned and has tiny measurement error. Third, we show that, due to its

unique features, the SAGLasso factor can address those concerns raised in Bauer and Rudebusch

(2016; hereafter BR), Bauer and Hamilton (2018; hereafter BH), and Ghysels, Horan, and Moench

(2018) in a unified manner and thus can potentially help resolve the spanning controversy.

While this paper focuses on linear models of predictors, two related studies use nonlinear ma-

chine learning models to construct bond return predictors (but do not address the spanning con-

troversy). Huang et al. (2016) find that the macro series selected by SAGLasso is robust to various

nonlinear models they consider. Bianchi, Büchner, and Tamoni (2021) study bond risk premia using

tree-based algorithms as well as neural networks and find that their superb statistical performance

translates into large economic gains. While these highly nonlinear methods can accommodate more

complex data, the SAGLasso method can lead to easier-to-interpret return predictors.3

The remainder of the paper is organized as follows. Section 2 states Spanning Hypotheses I & II,

followed by Section 3 on the data we use. Section 4 presents the SAGLasso algorithm, constructs

the SAGLasso factor, and examines its properties. Section 5 revisits the spanning controversy.

Section 6 concludes. Appendix A lists some notation and terms frequently used in the paper.

3Several other studies focus on the application of machine learning in the other finance markets. Freyberger et al.
(2020) use Group Lasso to study the impact of characteristics on expected stock returns. Gu et al. (2020) compare
Group Lasso with other machine learning methods in the context of stock return prediction. Bali et al. (2021) and
He et al. (2021) apply nonlinear machine learning models to inferring corporate bond risk premiums.
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2 Hypotheses on the Predictive Power of Macro Variables

2.1 Basic Setup

We use continuously compounded annual log returns on an n-year zero-coupon Treasury bond in

excess of the annualized yield on a one-year zero-coupon Treasury bond. That is, for t = 1, · · · , T ,

excess returns rx
(12n)
t,t+12 = r

(12n)
t,t+12 − y

(12)
t = ny

(12n)
t − (n − 1)y

(12(n−1))
t+12 − y(12)

t , where r
(12n)
t,t+12 is the

one-year log holding-period return on an n-year bond purchased at the end of month t and sold at

the end of month t+ 12, and y
(12n)
t is the time-t log yield on the n-year bond.

We consider the following predictive regression that is often used to investigate the role of the

macroeconomy in shaping bond risk premia (e.g., Ludvigson and Ng 2009 and JPS):

rx
(12n)
t,t+12 = α+ β′ZZt + β′FFt + et+12, (1)

where Z represents yield curve factors that are supposed to summarize yield-based information in

the Treasury bond market and F denotes macroeconomic factors. For example, Z can be factors

constructed from the current yield curve (e.g., yield spreads used in Campbell and Shiller 1991 or

return predictors estimated using historical yields (e.g., the Cochrane-Piazzesi forward rate factor).

Similarly, F can be either predetermined macroeconomic measures (e.g., the GDP growth and

NAPM price index) or factors extracted from a set of macroeconomic series, such as the Ludvigson

and Ng (2009; LN09 hereafter) factor and the new macro factors constructed in this study. The

remainder of this section focuses on null hypotheses about the predictive power of macro variables

and whether they are spannned.

2.2 Spanning Hypotheses

The issue of interest is macro factors’ conditional predictive power above and beyond that contained

in the yield curve. Empirically, this issue can be examined based on the significance of βF in Eq. (1),

for a given Zt.

It is known that the first three principal components (PCs) of yields explain all but a negligible
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fraction of the variation in the term structure (Litterman and Scheinkman 1991). If the current

yield curve is supposed to contain almost all the information useful for determining term premia,

we arrive at Spanning Hypothesis I (a hypothesis formulated and tested by JPS and BH):

HS1
0 : in Eq. (1), if Zt = PC o

1−3,t, then βF = 0,

where PC o
1−3 = (PC o

1,PC o
2,PC o

3), the vector of the first three PCs of the observed yield curve.

Interestingly, Duffee (2011) finds that the fourth and fifth PCs are also informative about

predicting bond returns. These factors need to be estimated using filtering techniques based on

both current and historical yields, however, as the effects of such factors on cross-sectional yields

are too small to dominate measurement error in observed yields. Nonetheless, a natural question is

whether macro variables contain information about future bond returns that is not captured by the

filtration generated by the yield curve process. If the “true” yield curve is Markov, as is commonly

assumed in term structuring modeling, this question leads to Spanning Hypothesis II:

HS2
0 : in Eq. (1), if Zt = PC 1−5,t, then βF = 0,

where PC 1−5 = (PC 1, . . . ,PC 5), the vector of the first five PCs of the noise-uncontaminated yield

curve. Given the predictive power of filtered PC 4−5, HS2
0 provides a stronger test of the conditional

predictive power of Ft than does HS1
0 .4 We also consider an alternative version of HS2

0 where Zt is

the spanned “cycle” factor of Cieslak and Povala (2015) in Internet Appendix IA.F.

Small-sample distortions may also take place in tests of HS1
0 and HS2

0 . BH demonstrate that

estimates of standard errors in the t-test of βF = 0 can be biased because PCs (Zt) are typically

persistent and autoregressive with innovation terms that are possibly correlated with et+12. They

propose a bootstrap procedure to account for the size distortion and conclude that much of extant

“evidence against the spanning hypothesis is in fact spurious.” Besides the statistical inference about

βF in Eq. (1), BH also study the finite-sample distribution of the increase in R2 when Ft is added

to the regression. They show that serially correlated et+12 due to overlapping observations could

4The use of PC 4−5 rather than PC o
4−5 in HS2

0 is because the latter’s predictive power is weaker (see Internet
Appendix IA.A). The version of HS2

0 based on PC o
4−5 is examined in JPS, BR, and BH.
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substantially inflate the incremental R2 in small samples, even if Ft provides no help in predicting

bond returns. We test HS1
0 and HS2

0 by conducting an asymptotic inference (Sections 4.4.2) as well

as an MTSM-based finite-sample inference (Section 5.2).

3 Data

We use monthly data on bond returns and macroeconomic variables over the period January 1964

to December 2014 in our analysis. The start of our sample coincides with that of many other studies

that also use the Fama-Bliss yield data set (e.g., Cochrane and Piazzesi 2005; Ludvigson and Ng

2009). We also conduct part of the empirical analysis based on the 1985–2014 subsample because,

first, several studies including JPS and BR focus on post-1984 samples; secondly, some studies argue

that the predictive power of macro variables weakens in more recent samples, especially post-1984;5

and thirdly, the vintage data coverage for many time series starts in the early 1980s.

Bond data used in this study consist of monthly prices for one- through five-year zero-coupon

Treasury bonds from the CRSP (Fama Risk Free Rates and Fama-Bliss Discount Bond Yields) for

the full sample, and self-constructed monthly zero yields with maturity beyond five but up to ten

years for the post-1984 sample. The latter data set extends the original Fama-Bliss data to longer

maturities and is constructed using monthly quotes on individual bonds from the CRSP Master

File of Treasury Bonds by following Le and Singleton (2013).6 Zero yields can then be used to

construct annual excess returns as defined in Section 2.1.

Our macro data set consists of a balanced panel of 131 monthly macroeconomic times series,

and is an updated and “real-time” version of the macro data set used in Stock and Watson (2002,

2005) and LN09 that includes one more economic series no longer available. The main source of

5For instance, BH find that the predictive power of macro variables is substantially weaker in extended samples
that include observations in 2010s; BH also question the stability of Ludvigson and Ng’s results for their macro return
predictors across different subsample periods, especially over the post-1984 sample. Additionally, Duffee (2013a,b)
notes that “the predictability associated with Ludvigson and Ng’s real activity factor may be sample-specific.” Our
main results are also robust to a backward sample extension to 1952, the starting year of the original Fama-Bliss
data (Internet Appendix IA.B).

6Similarly extended Fama-Bliss data are used in JPS and BR. An alternative data set used in the literature is
constructed by Gürkaynak, Sack, and Wright (2007).
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our real-time macro data is the Archival Federal Reserve Economic Data (ALFRED) database at

the Federal Reserve Bank of St. Louis, which is a collection of vintage versions of U.S. economic

data and contains more monthly sampled series than does the Philadelphia Fed’s Real-Time Data

Set. Appendix B includes the list of the 131 series in Table A.1 and describes how our macro data

are compiled. The 131 series are organized in a hierarchical manner. Such a cluster structure of

macro variables turns out to be useful to model selection. To that end, following Ludvigson and

Ng (2011), we group the 131 series into eight categories: i) output (17 series); ii) labor market (32

series); iii) housing sector (10 series); iv) orders and inventories (14 series); v) money and credit

(11 series); vi) bond and FX—interest rates or financial (22 series); vii) prices or price indices (21

series); and viii) stock market (4 series). Column 2 of Table A.1 reports the group ID of each series.

Section 4.2 shows that some of the eight groups have stronger predictive power than the others.

4 Adaptive-Lasso-Based Model Selection

In this section we first describe the supervised adaptive group lasso algorithm. We next use the

algorithm to construct a macro factor with low correlations to the yield curve. We then examine

the predictive power of this new macro factor for future bond returns as well as economic gains of

such bond return predictability.

4.1 Supervised Adaptive Group Lasso

For a T × 1 response vector y, consider the following penalized least squares (PLS) function:

fPLS(β) = ‖y −Xβ‖2 + λ

N∑
i=1

|βi|, (2)

where λ ≥ 0 is a tuning parameter used to penalize the complexity of the model, and ‖ · ‖ is the

`2-norm, namely, ‖η‖ := (η′η)1/2, ∀η ∈ RT . The `1-norm penalty |βi| used here induces sparsity in

the solution and defines the “least absolute shrinkage and selection operator” (Tibshirani 1996)—

this method is usually referred to as “lasso” rather than “LASSO” in the statistics literature. The
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lasso estimate is given by β̂lasso = arg minβ f
PLS(β).

If λ is zero, then β̂lasso equals the OLS estimate, β̂ols, provided that the OLS estimation is

feasible. Recall that none of β̂ols’s components are zero. However, as λ increases, some components

of β̂lasso will shrink to zero, and as a result, the corresponding “useless” explanatory variables will

be dropped and the resulting regression model will become more parsimonious.

Lasso has several advantages over the OLS. First, by construction, lasso reduces the variance of

the predicted value and thus improves the overall (out-of-sample) forecasting performance. Second,

the OLS is known to have poor finite sample properties when the dimension of parameters to be

estimated is comparable with the number of observations. For instance, in our case there are 131

macro series along with six of their lags—917 (131 × 7) macro variables in total—with only 600

observations for each series. Lasso is developed to handle such problems. Third, lasso leads to a

much more parsimonious and easier-to-interpret model than the OLS. In fact, the parsimonious or

sparse feature of lasso distinguishes it from ridge regression, another shrinkage method.

Despite lasso’s popularity, one limitation of the method is that lasso estimates can be biased.

Zou (2006) shows that this problem can be fixed by using Adaptive Lasso, which minimizes the

following objective function:

‖y −Xβ‖2 +

N∑
i=1

λi|βi|, (3)

where different tuning parameters {λi} are introduced to penalize different βis separately.

We construct a macro-based return predictor in two steps. In the first step, we utilize the

cluster structure of our macroeconomic panel and consider variable selection separately within each

of the eight groups/clusters formed in Section 3; that is, we screen out less important or irrelevant

individual economic series and identify informative ones within each cluster using adaptive lasso.

This is done for three reasons. First, even variables within the same group may represent certain

quantitative measurements of different economic sectors. For instance, the Industrial Production

(IP) Index of Consumer Goods and the IP Index of Materials (in group i) might be connected
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to bond risk premia in a different manner. Second, we want to select macroeconomic measures

that are jointly significantly associated with bond risk premia. Third, adaptive lasso selects only a

small number of macro variables within each cluster and thus allows us to construct parsimonious

models, including easy-to-interpret group macro factors if necessary.

In the second step, we consider all the groups together, each of which now consists of only those

macro variables selected in step one, and then conduct variable selection at the group level. We

implement this idea using the Group Lasso of Yuan and Lin (2006) to deal with situations in which

covariates are assumed to be clustered in groups (see Appendix C). That is, we select important

clusters using group lasso, thereby identifying influential economic sectors in addition to individual

variables selected in the first step.7

We refer to this two-step procedure as the supervised adaptive group lasso (SAGLasso) algo-

rithm.8 Its key feature is to consider penalized time-series selection at both the within-cluster level

and the cluster level. We construct bond return predictors by applying SAGLasso to a large set

of macro series in this study. SAGLasso should also be useful in similar big data applications in

finance and economics.

4.2 A Macro-Based Return-Forecasting Factor

This subsection implements the two-step SAGLasso procedure using the average excess return

(the bond market return), arxt,t+12 = 1
(nb−1)

∑nb
n=2 rx

(n)
t,t+12, as the dependent variable, where nb

equals 5 (10) when the full (post-1984) sample is used.

First, we perform model selection in each of the eight groups of macro series separately, using

only macro variables within the same group along with their six lagged values. To minimize the

7Using high-dimension model selection (e.g., Huang, Shi, and Zhong 2015), Huang, Li, Ni, and Shi (2016) find that
the variables selected under the SAGLasso procedure are robust to a variety of nonlinear models. Bianchi, Büchner,
and Tamoni (2021) also emphasize that it is important to exploit the cluster structure of the macroeconomic panel
and do selection within groups and across groups. As such, different machine learning methods seemingly can capture
the “common” cluster structure of the same macro data, at least for the purpose of bond return predictions.

8In statistical learning, a problem is considered to be supervised if the goal is to predict the value of an outcome
measure based on a variety of input measures. See Appendix C for more details of the SAGLasso procedure.
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information overlap with respect to yield curve factors, we include the first three yield PCs in our

variable selection but do not penalize the associated coefficients. Put differently, in the regres-

sion framework of Eq. (1), Zt is PC o
1−3,t but βZ are not penalized; Ft includes contemporaneous

and lagged macro variables in a given group and βF are subject to shrinkage. Therefore, at the

intragroup level of group j, we minimize the following objective function:

‖arx− Zβ
〈1〉
Z,j − Fβ

〈1〉
F,j‖

2 +

7Nj∑
i=1

λji |β
〈1〉
F,j,i|,

where λji is the tuning parameter; Nj denotes the number of economic series contained in group j;

β
〈1〉
F,j,i is the i-th component of β

〈1〉
F,j ; and the superscript “〈1〉” emphasizes that these beta coefficients

are obtained in the first step of the SAGLasso procedure.

This first step allows us to screen out a large portion of candidate predictors within each group.9

In total, only 39 out of 131 series remain and have non-zero coefficients on their contemporaneous

and/or lagged values after the adaptive lasso is applied; the number of the selected macro variables

is only 58 out of 917 (131× 7). Let X̂
〈1〉
j , j = i, . . . , viii, denote the set of macro variables, in group

j, that survive from the first stage.

In the second step, we select those relevant X̂
〈1〉
j using group lasso. Yield PCs are included as

control variables as before. The results from the group lasso show that the coefficients of groups i,

iv, v, vi, and viii are shrunk to exactly zero; particularly, group vi (bond and FX) is not selected

as a result of controlling for yield factors. For each of the three selected groups—labor market

(group ii), housing (group iii), and price indices (group vii)—the group lasso solution obtained

from Eq. (19) in Appendix C yields its corresponding group macro factor:

ĝj = X̂
〈1〉
j β̂

〈2〉
j , j = ii, iii, vii, (4)

where j denotes the index of group j whose beta coefficient in step two, β̂
〈2〉
j , is not zero. For ease

of reference, we relabel {ĝj} as {ĝh;h = 1, 2, 3}. They each have a clear economic interpretation by

9For instance, consider the largest group, the “labor market,” that originally contains 32 series and thus 32 × 7
(=224) variables. Column 7 of Table A.1 indicates that only five series (out of 32), #41, #44, #46, #48, and #49,
are selected and that only 11 out of the original 224 variables are selected, including lag-5 and lag-6 of #41; #44
along with its lag-1, lag-2, and lag-3; #46 along with its lag-2; #49 along with its lag-2; and #49 itself.
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construction and represent the employment, housing, and inflation factors, respectively.

Unlike inflation and employment, which are commonly incorporated in MTSMs and are well

motivated by certain equilibrium term structure models (e.g., Wachter 2006), the housing sector

has received little attention in the term structure literature. Given that ĝ2 is a reflection of the

share of aggregate consumption devoted to housing, the link between our housing factor and the

term premium may be motivated using the idea of Piazzesi, Schneider, and Tuzel (2007) that the

expenditure share on housing can drive the equity risk premium.

Note that each of {ĝh} is parsimonious: ĝ1 includes 5 series (11 variables); ĝ2 8 series (13

variables); and ĝ3 6 series (6 variables). In total, out of the original 131 series (917 variables),

we identify 19 series (30 variables) associated with labor market, housing, and prices that have

strongest connection with bond risk premia but the least overlap with yield PCs. Moreover, 21

selected variables (out of 30) are lagged, indicating that many series have a lagged effect on bond

risk premia. In particular, certain types of shocks to consumer prices or the labor market seem to

require a long lag to manifest their impact on the bond market. The SAGLasso method allows us

to select those important lagged variables and capture their lag effect on bond risk premia (e.g., ĝ3

includes no current CPI and PPI variables).

Figure 1 provides a visualization of the selected macro variables. To illustrate the words most

relevant to bond return prediction, the word cloud font is drawn proportional to the number of

selected macro series (including lagged variables) in which the word appears. The most notable

finding is that new housing units started and authorized are highly informative about bond risk

premia. In addition to the group level information, the word cloud also reveals the most important

subsectors within each selected group. For example, housing market condition in the west and

northeast states seem to play a more important role than that in the midwest. Also, commodity

price indices appear to be more useful than more general price indices for bond return prediction.

For purposes of forecasting, term structure modeling, and model comparison, we construct a
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single aggregate macro predictor using the aforementioned three group factors:

Ĝ ≡
3∑

h=1

ĝh. (5)

We refer to this predictor as the SAGLasso (single) macro factor hereafter. Note that this factor is

a linear combination of only 30 macro variables belonging to merely 19 different series, yet it has

strong predictive power for bond risk premia as shown below.

4.3 A Recursively Constructed SAGLasso Factor

The SAGLasso factor constructed in Section 4.2 is based on the full sample and is an uncondi-

tional/static factor. Below we construct a dynamic SAGLasso factor recursively. To avoid forward-

looking bias, we estimate everything using only the information available at the time of the forecast;

namely, we recursively re-estimate both factors and parameters when the new information becomes

available. We denote a recursively constructed factor by a tilde (e.g., G̃) to differentiate it from its

unconditional counterpart, denoted by a hat (e.g., Ĝ).

Suppose we want to construct G̃ at month t based on observations from t−R to t− 1 and use

the predictor to help forecast one-step-ahead annual excess bond returns, where R > 1 denotes the

number of months included in the training period. Namely, in month t = R we have the following

information set of monthly observations available: FR = {Xt, {rx(n)
t,t+12, 2 ≤ n ≤ 5}, t = 1, . . . , R}.

To examine the importance of macro variables over time, we focus on rolling-window estima-

tions.10 That is, we construct G̃ at, say, t+1 using observations from t-R+1 to t. We use R = 240

(a 20-year training period) in this exercise. Figure 3 depicts the importance of individual macro

variables over time. From the rolling-window prediction at time t, we extract coefficients of stan-

dardized macro variable k and their lagged values βk,l,t(1 ≤ k ≤ 131, 0 ≤ l ≤ 6), and map their

10See, e.g., Lewellen (2015) who uses a 10-year rolling window to form OLS-based forecasts of individual stock
returns and finds that the importance of many characteristics diminishes over time. The procedure using an expanding
window to construct G̃ has higher stability than that using the rolling window: ĝ1, ĝ2 and ĝ3 are the only groups
selected. At the individual level, variables #42 (belonging to “labor market”) and #53 (belonging to “housing

sector”) are the only new variables selected in certain months (and not included in the unconditional Ĝ factor). The

predictive power of G̃ with the expanding window is closely comparable to that with the rolling-window.
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norm
√∑

l β
2
k,l,t to the color gradients displayed on the right side of the figure. At the group

level, the selection results are fairly stable over time: The labor, housing, and inflation groups

are selected in most months. The only exception is the 2002–2005 period, during which macro

variables in housing and inflation groups diminished in importance and a couple of variables on

industrial production are selected instead.11 At the individual level, the selected macro series are

consistent with the results in Figure 1. Within the labor market group, nonfarm payrolls in the

manufacturing and financial sectors play crucial roles in bond return predictions. In the inflation

group, the commodity price index appears the most prominent determinant of bond risk premiums.

4.4 Predictive Power of the SAGLasso Factor

4.4.1 In-Sample Evidence

Figure 2 plots the SAGLasso factor (in blue) and excess returns on the five-year bond (in orange) in

the full sample period, where shaded areas indicate the periods designated by the National Bureau

of Economic Research (NBER) as recession periods. As expected, Ĝ captures the countercyclic

component in risk premia and leads movements in the realized bond returns. Indeed Ĝ generally

starts rising at the early stage of economic downturns and peaks during recessions; accordingly,

excess bond returns follow and tend to peak toward the end of (or even after) recessions.

Panel A of Table 1 presents results on the in-sample predictive power of Ĝ, for 2-, 3-, 4-, and

5-year bonds, over the full sample. Test statistics are reported for two different standard errors:

Hansen and Hodrick (1980) GMM (in parentheses) and Newey and West (1987) (in brackets).12

Columns (1)–(4) show that Ĝ alone has significant predictive power for excess returns, with the R2

ranging from 0.35 for the 2-year bond to 0.39 for the 5-year one. Columns (5)–(20) indicate that the

11Given that the housing market boom after the early 2000s recession makes the share of housing consumption
less of a concern, it is unsurprising that variables in the housing sector become less important in this period. By the
same logic, the decline in the importance of inflation indices can be attributable to the stable inflation uncertainty
in 2000s (e.g., Wright 2011).

12In an earlier version, we also report the t-statistics with Hodrick (1992) 1B covariance estimator, which is

constructed using the approximate method of Wei and Wright (2013). The results for Ĝ are qualitatively similar,
but other return predictors tend to lose their significance with the Hodrick standard errors.
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significance of Ĝ is robust to each of the following four factors: (a) a modified LN09 factor (L̂N
m

),

(b) the Cochrane and Piazzesi (2005) forward-rate factor (CP ), the Duffee (2011) hidden factor

(Ĥ), and the convergence gap (ĈG) defined by Berardi et al. (2021).13 The Ĝ factor, however, does

not completely subsume any of these four factors. The main reason is that whereas Ĝ is a pure

macro factor by construction, L̂N
m

includes Treasury and FX variables (group vi), ĈG exploits

information in the Federal Funds rate market, and both ĈP and Ĥ are purely yield-curve-based

factors. For example, Ĝ does not subsume ĈG for the 2-year bond in the bivariate regression.

This result is intuitive given that by construction, ĈG is expected to be most informative about

short-term bond premiums while Ĝ is trained on the aggregate bond market returns rather than a

specific-maturity bond. As another example, if yield PCs are not controlled for in the second step

of the construction of Ĝ, then the resultant Ĝ subsumes L̂N
m

(Huang and Shi 2010).

Panel B reports the results for 2-, 5-, 7-, and 10-year bonds for the post-1984 subsample. While

the results on Ĝ are generally similar to their counterparts in panel A, the predictive power of the

other return predictors all becomes weaker except for ĈG. For instance, Ĝ now subsumes L̂N
m

under the HH correction, but ĈG has increased values of both the t-statistics and incremental R2s.

In summary, Table 1 shows that Ĝ has both significant unconditional and conditional predictive

power for bond risk premia. Additionally, Ĝ subsumes other macro-based predictors post-1984. In

Internet Appendix IA.B, we also conduct in-sample spanning tests and find that both HS1
0 and

HS2
0 are overwhelming rejected.

4.4.2 Out-of-Sample Accuracy

We next examine the out-of-sample performance of the SAGLasso factor, focusing on its incremental

power above and beyond yield-curve factors.

13In an untabulated analysis, we also consider the output gap factor (gap) of Cooper and Priestley (2009); the
new-order factor (NOS) of Jones and Tuzel (2013); the Cieslak and Povala (2015) “cycle” factor based on yield
curves and inflation; and a realized jump-mean factor constructed by Wright and Zhou (2009) (the latter two for

the post-1984 sample only). We find that Ĝ subsumes gap and NOS and is not driven out by the other two factors.
Chernov and Mueller (2012) uncover a hidden factor that captures inflation expectations as well as bond risk premia;
however, this “survey” factor is present only in models estimated with survey-based information.
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We divide the sample into training/estimating and out-of-sample (testing) portions. The former

consists of R > 1 observations. We use fixed rolling-windows with R = 240 (R = 180) for the

full sample (sub-sample) analysis. If P denotes the number of one-step-ahead predictions, then

T = R+P+12, where T is the total number of observations of macro series. We construct G̃

recursively month by month using only information available at the time of estimation as described

in Section 4.3. Similarly, we recursively re-estimate the yield-curve factors PC o
1−3,t and PC 1−5,t,

whose dynamic versions are denoted P̃C
o

1−3,t and P̃C 1−5,t.
14

Given the dynamic macro and yield-curve factors, we form our out-of-sample tests of HS1
0 as

follows: Consider a “restricted” benchmark model and an “unrestricted” model, where the former

is the return forecasting model solely based on P̃C
o

1−3,t and the latter includes P̃C
o

1−3,t and G̃t.

Given this pair of nested specifications, we can obtain their time series of realized forecast errors

over the entire (out-of-sample) testing period and then conduct a model comparison. In other

words, the statistical significance of G̃’s incremental predictive power can be assessed by testing

the null hypothesis that the restricted model encompasses the unrestricted one. We form tests of

HS2
0 similarly by replacing P̃C

o

1−3,t with P̃C 1−5,t.

Panel A of Table 2 accesses the out-of-sample performance of G̃ with three metrics: the out-

of-sample R2 (Campbell and Thompson 2008) along with its incremental changes due to G̃t (R2
oos

and ∆R2
oos), and two encompassing tests for nested models—the Ericsson (1992) ENC-REG and

Clark and McCracken (2001) ENC-NEW tests.15 The R2
oos levels of G̃t show that G̃t alone captures

nontrivial real-time information on bond risk premiums. Also, the R2
oos increases with the bond

maturity. In fact, the R2
oos for the 2-year bond is substantially lower than that for the 5-year

14To reduce the computational burden, we estimate the parameters in model YTSM (5) only once using the full

sample and then extract P̃C 1−5,t using filtering (not smoothing) from the estimated model. That is, P̃C 1−5,t =

P̂C 1−5,t in Section 4.4.2. Using P̂C 1−5,t, however, is biased against the predictive power of G̃t. Indeed, we find that

using (P̃C
o

1−3,t, P̂C 4−5,t) instead of P̂C 1−5,t slightly strengthens G̃t’s predictive power (untabulated).
15The precise asymptotic distribution of the test statistics in these two tests depends on the asymptotic ratio of

P/R, denoted by π ≡ limP,R→inf P/R. The Ericsson test critical values from a standard normal distribution are
conservative if π > 0. Given that π ≥ 1, the simulation results of Clark and McCracken (2001) show that the 95%
critical value ranges from 1.584 to 2.685 for testing one additional predictor.

15



(10-year) bond in the full sample (subsample).16.

Panel A1 (A2) shows that incorporating G̃t into the restricted model based on P̃C
o

1−3,t (P̃C 1−5,t)

and a constant improves the model performance substantially in either the full or sub sample. First,

both the ENC-REG and ENC-NEW test statistics greatly exceed their asymptotic critical values,

regardless how the asymptotic ratio of P/R is specified, thereby rejecting both HS1
0 and HS2

0 .

Second, including G̃t also raises R2
oos substantially. For instance, when P̃C

o

1−3,t is augmented

with G̃t , ∆R2
oos ranges from 0.271 for the 5-year bond to 0.349 for the 2-year bond in the full-

sample analysis. Note that the high values of ∆R2
oos here are partially attributable to the negative

R2
oos values under the restricted models. To summarize, panel A shows that the improvement in

forecasting accuracy due to G̃ is statistically significant.

4.4.3 Economic Values

We now examine economic gains of G̃’s out-of-sample predictive power. We follow Campbell and

Thompson (2008) and assess a mean-variance investor’s utility gains from trading on G̃ against

a benchmark. The investor is assumed to dynamically allocate her portfolio between an N -year

bond (N ≥ 2) and a one-year bond (the risk-free asset) at a monthly basis, based on the standard

optimal (timing) strategy (e.g., Thornton and Valente 2012). Given her risk aversion coefficient

(γ) and the N -year bond return volatility at time t, the investor implements the strategy based on

her out-of-sample forecasts of the N -year bond risk premium.

We consider three return predictors: G̃t, P̃C
o

1−3, and P̃C
o

1−3,t+G̃. The timing strategies based

on these predictors are denoted SG, SY , and SG+Y , respectively. In addition, we consider a buy-

and-hold strategy, denoted SBH . We then compare SG against SBH , as well as SG+Y against SY ,

to examine incremental welfare gains due to G̃. Specifically, we calculate the certainty equivalent

return (CER) values for each month in the testing sample and then estimate the following regression:

ug,t−u0,t = ν+εt, where ug,t and u0,t represent realized utilities generated by strategies SG and SBH

16Bianchi et al. (2021) find that the performance of their macro factors is also relatively weak for short-term bonds.
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(SG+Y against SY ), respectively. To examine whether the incremental utility gains are significant

or not, we test the null hypothesis that ν = 0 (denoted Hν
0 ) using a variant of the Diebold and

Mariano (1995) test, proposed by Harvey et al. (1997), that accounts for autocorrelation in the

forecasting errors.

Panel B of Table 2 reports the annualized CER values along with the corresponding p-values

for Hν
0 (in angel brackets) with N = 2, 3, 4, 5 for the full sample or N = 2, 5, 7, 10 for the post 1984

subsample. In each panel we consider two risk version levels: γ = 3 as adopted by Campbell and

Thompson (2008) and Gu et al. (2020), and γ = 5 as adopted by Thornton and Valente (2012) and

Bianchi et al. (2021). We also follow these studies to limit the portfolio weight on the N -year bond

to lie between 0 and 150%.

Results for SG vs. SBH , reported in Panel B1, indicate that the out-of-sample predictive power

of G̃ can generate sizable welfare benefits relevant for investors. For example, in the case of γ = 5

with N = 5, SG leads to certainty equivalent gains of 8.62% (4.05%) relative to SBH for the full

(post-1984) sample. Campbell and Thompson (2008) show that the investor’s welfare gain depends

on the relative magnitude of predictive R2 and the buy-and-hold Sharpe ratio. Since the R2
oos

values of G̃ increases with the bond maturity and the Sharpe ratio decreases with the maturity, it

is not surprising to find that CER values become greater as the bond maturity increases.

Results for SG+Y vs. SY , reported in panel B2, show that the hypothesis Hν
0 is rejected at the

5% significance level in all but one case (with N = 2 and γ = 5). In other words, incorporating

G̃ into the out-of-sample forecasting of the bond risk premium can lead to significant utility gains

relative to trading on P̃C
o

1−3 alone. Since these utility differences have the units of expected

annualized return, they can be roughly interpreted as the differences in portfolio management fees.

We find that a mean-variance investor with γ = 3 is prepared to pay extra 43-113 bps per year to

exploit the additional information as contained in factor G̃.

To summarize, Section 4 provides strong evidence against HS1
0 and HS2

0 . It also shows that
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rejection of the these two hypothesis carries significant economic values.

4.4.4 Additional Evidence

We further examine the predictive power of the SAGLasso factor in Internet Appendix IA.B and

summarize the main findings here.

Given that L̂N
m

is constructed using the same set of 131 macro series and includes all 131

series as well as squares and cubes of these macro variables, L̂N
m

serves as a natural benchmark

for Ĝ (a linear combination of 19 series and some of their lagged variables). We find that Ĝ shows

stronger predictive ability than L̂N
m

in both in-sample and out-of-sample analyses.

As mentioned before, the set of 131 macro series we use is adjusted for both data revisions and

publication lags. One relevant question is the impact of these two adjustments on bond return

predictability. We find that the return predictability evidence based on Ĝ is not sensitive to the

vintage of macro data used. In contrast, publication lags pose much greater “danger” than data

revisions in forecasting future bond returns based on macro variables, at least in our sample. This

problem can be mitigated straightforwardly, however, since it is easier to make an adjustment for

publication lags than to figure out preliminary macro data releases and adjust for data revisions.

To better understand the source of the predictive power of the SAGLasso factor (Ĝt), we also

examine properties of its three components: the employment (ĝ1t), housing (ĝ2t), and inflation

(ĝ3t) factors. As expected, ĝ1t, ĝ2t, and ĝ3t all have low correlations with the yield curve factors;

as a result, Ĝ is weakly correlated with PC o
1−3,t and hardly correlated with PC 4,t and PC 5,t. The

three group factors also show significant predictive power, both individually and jointly. Following

JPS, we also examine the relative importance of the three group factors across bond maturity. Our

results indicate that relatively speaking, among the three group factors, ĝ1t is the most important,

followed by ĝ3t, and then by ĝ2t, regardless of the bond maturity.17

17Bianchi et al. (2021) consider more categories and find that variables related to the stock and labor market (the
output & income and orders & inventories) are more important for the short-end (long-end) of the yield curve. Note
that the aggregate bond market is used to train {ĝh}.
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The SAGLasso algorithm is implemented using 131 macro variables along with six of their lags.

One question that arises is: Are lags of macro variables are essential to the predictive power of

the SAGLasso factor? If yes, what is the optimal number of lags to be included in our supervised

learning? We repeat the baseline analysis using the 131 macro variables along with NL of their lags,

where NL = 0, 3, 9, 12. We find that the evidence of the return predictability is robust to the use of

no lags (NL = 0). Nonetheless, our results suggest that the SAGLasso factor constructed using the

131 macro variables along with 3 or 6 of their lags has the best performance in both the in-sample

and out-of-sample predictions. This finding reflects a trade-off between including more information

in the supervised learning and imposing a denser data structure to enhance the estimation stability.

While the baseline SAGLasso factor (with NL = 6) seems to capture more information on long-term

bond premiums, the alternative SAGLasso factor with NL = 3 outperforms for short-term bonds.

5 The SAGLasso factor and the Spanning Controversy

As an important application of the SAGLasso factor, we revisit the spanning controversy in this

section. We focus on the three main aspects of the controversy. First, whether a macro factor’s

predictive power is robust to finite samples (see Section 2). Second, whether a macro factor is an

unspanned pricing factor in an MTSM. Third, whether or not a macro factor’s temporal variation

can be captured by the yield curve. We show that the SAGLasso factor can address all three aspects

of the controversy by using the dynamic term-structure modeling framework.

5.1 The Modeling Framework

Following JPS, we assume that all risks in the economy are encompassed by an N -dimensional

state vector Xt = (Pt, Ft), where Pt denotes L linear combinations of (noise-free) zero yields and

the (N -L)-vector Ft represents macro factors as before. The short rate is an affine function of Xt:

rt = δ0 + δ′1Xt = δ0 + δ′1pPt + δ′1fFt. (6)
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The dynamics of Xt under the risk-neutral measure Q are assumed to follow a Gaussian process:

Xt =

Pt
Ft

 =

µQp
µQf

+

ΦQ
pp ΦQ

pf

ΦQ
fp ΦQ

ff


Pt−1

Ft−1

+ Σx ε
Q
x,t, εQt ∼MVN(0, I). (7)

It follows from Duffie and Kan (1996) that the yield of an m-period zero-coupon bond is

y
(m)
t = Am +B′mXt, (8)

where the expressions for Am and Bm are given in Internet Appendix IA.C.1. The market price of

risk follows the “essentially affine” structure of Duffee (2002):

ΣΛt = µPx − µQx + (ΦP − ΦQ)Xt = λ0 + λ1Xt, (9)

where {µP,ΦP} are the P-measure counterparts of {µQ,ΦQ}.

5.2 Finite Sample Analysis

The statistical inference done in Section 4.4 is based on asymptotic distributions. We now examine

HS1
0 andHS2

0 using a finite-sample analysis. This is necessary because, first, our dependent variables

involve overlapping observations by construction, and secondly, the first and second PCs of yield

curves are highly persistent in our sample, with first-order autoregressive coefficients (ACF) of

0.99 and 0.94, respectively (while the ACF of the SAGLasso factor is only 0.82). Below we first

specify the underlying data-generating processes (DGPs) for HS1
0 and HS2

0 within the framework

described in Section 5.1. We then construct finite-sample distributions of test statistics from return-

forecasting regressions and conduct finite-sample inference based on such distributions.

5.2.1 Data-Generating Processes for Null Hypotheses

DGPs under HS1
0 or HS2

0 impose no restrictions on model parameters and allow them to be esti-

mated freely. That is, as long as the N ×N yield loading matrix B ≡ (Bm1 , . . . , BmN )′ is invertible,

the fraction of variations in term premia that are associated with macro factors is also attributable
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to certain linear combinations of these yields. This type of MTSMs are referred to as spanned

models and denoted by SM (L,N ). If B is not invertible, then the model is no longer spanned.

Given that Ft = Gt, the DGP for HS1
0 is model SM (2, 3). To see why, suppose that yield PCs

are defined in terms of k zero-coupon bonds with maturities M = {m1, . . . ,mk} as follows:

PC 1−N ,t = WYMt ≡W (AM + B′MXt), W ∈ RN×N .

Since SM (2, 3) is a spanned model, rank (BM) =N=3. The resultant invertibility of WB′M implies

Et

(
rx

(12n)
t,t+12

)
= constant + ψ′12n,12(WB′M)−1PC 1−3,t, (10)

where ψm,12 = mB′m − (m− 12)B′m−12(ΦP)12 − 12B12 for m > 12. This result means that Gt has

no incremental predictive power for annual excess returns in the presence of PC 1−3,t, consistent

with HS1
0 . Similarly, the DGP for HS2

0 is model SM (4, 5).

At the heart of Eq. (10) is the theoretical spanning of Gt by any three zero yields. In other

words, as long as k ≥ N , the covariance matrix of YMt (stacked bond yields) has a rank of

3. However, empirically the sample covariance matrices are nonsingular regardless of the choice

of maturities M. The standard interpretation in the literature is that observed yields (denoted

Y oM
t ) are contaminated by small transitory noise, modeled as idiosyncratic “measurement error”

(representing a catch all term for model misspecification and other imperfections) as follows:

Y oM
t = AM + B′MXt + ηyt, ηyt ∼MVN(0, σ2

ηyI). (11)

The presence of ηyt is also important in terms of accommodating hidden yield factors in spanned

models with N > 3. For instance, consider model SM (4, 5), where PC 1−5,t fully determine the

term premia and absorb the role of Gt. If at least five zero yields (or their linear combinations)

are assumed to be measured without error, the full-rank B′M indicates that the entire state vector

can be perfectly extracted from the five yields. Consequently, HS2
0 degenerates into a version of

HS1
0 that involves more than three yield PCs. Alternatively, if measurement error is ubiquitous,

it becomes difficult to extract higher-order PCs, say, PC 4,t, from the cross section of yields. As
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such, Eq. (11) opens up the possibility that bond risk premia contain a component attributable to

higher-order PCs, yet hidden from the observed yield curve—namely, a hidden factor.

5.2.2 Finite-Sample Inference

This subsection reports finite-sample properties of test statistics under HS1
0 or HS2

0 , whose under-

lying DGPs are SM (2, 3) and SM (4, 5), respectively. We estimate these spanned models using the

full-sample zero-coupon yields with maturitiesM = {0.25, 1, 2, 3, 4, 5} to generate samples over the

period 1964–2014, or using extended Fama-Bliss zero yield data with M = {0.5, 1, 2, 3, 4, 5, 7, 10}

to generate samples for the post-1984 period.

As the inference about HS2
0 requires all yields to be measured with errors, we implement the

model estimation with maximum likelihood using the Kalman filter. To facilitate the interpretation

of the sources of risk compensation, we normalize yield-based state variables Pt to the first L PCs

of zero yields; namely, Xt = (PC 1−L,t, Gt). This rotation also offers OLS-based starting values in

the estimation of P-dynamics of Xt. When estimating Q-measure parameters, we rotate Xt to X∗t ,

a state vector that satisfies the canonical form of Joslin, Le, and Singleton (2013).18

Under each spanning hypothesis, we generate 5,000 artificial data sets from its underlying DGP

estimated with the full or post-1984 sample. In the in-sample analysis, we obtain the distributions

for two t-statistics (based on HH and NW standard errors, respectively) and R2.19 In the out-

of-sample analysis we consider the ENC-REG and ENC-NEW tests and R2
oos.

20 We calculate the

5% critical value and p-value for each set of statistics, the latter being defined as the frequency of

bootstrap replications in which the test statistics are at least as large as in the real data.

18In other words, instead of directly estimating parameters in Eqs. (6) and (7), we estimate another (and shorter)
parameter vector ΘQ

M (defined in Internet Appendix IA.C.1) that encompasses all bond pricing information.
19We do not consider the t-statistic based on the Hodrick (1992) standard errors here because it tends to under-reject

the null. Also, Ang and Bekaert (2007) show that it has desirable small-sample properties.
20In our baseline finite-sample inference, there is no distinction between the in-sample factor Ĝt and the real-time

factor G̃t. To make the out-of-sample inference truly out of sample, we perform full-scale simulations in which the
time series of 131 individual macro variables are generated together with the N -L yield factors. In each trial, the
SAGLasso estimator is implemented on the generated macro variables to construct macro factors Ĝt and G̃t. These
re-simulated Ĝts and G̃ts are then used to infer the finite-sample distribution of test statistics. This exercise guards
against the data mining concerns being translated into the finite-sample analysis. Unreported results indicate that
the properties of test statistics under the full-scale simulations are similar to those under our baseline simulations.
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Panel A of Table 3 reports finite-sample properties of test statistics for the full sample. Note

from panels A1 (in-sample) and A2 (out-of-sample) that small-sample distortions appear more

severe under HS1
0 . For in-sample t-statistics, the “true” 5% critical value ranges from 3.46 to 4.47,

depending on the bond maturity and standard errors used; for ∆R2 (the incremental in-sample R2

due to Gt), the 95th percentile of its small-sample distribution is higher than 9%. However, all of

these critical values are substantially lower than actual statistics obtained from our data sample.

Similarly, note from panel A2 that there is strong evidence against HS1
0 . In particular, all statistics

have bootstrapped p-values less than 1%. Also, the critical value of ∆R2
oos ranges from 11.7% for

the 5-year bond to 13.6% for the 2-year bond. Results reported in panels A3 (in-sample) and A4

(out-of-sample) of Table 3 illustrate that under HS2
0 , small-sample distributions of test statistics

show even greater deviations from their asymptotic distributions. For instance, the critical value

for the HH t-statistics under HS2
0 (panel A3) is at least 0.8 higher than its counterpart under HS1

0

(panel A1), with the biggest difference of 1.29 (= 4.75−3.46) for the 5-year bond. For out-of-sample

tests, the ENC-REG critical value is 4.02∼4.36, and the ENC-NEW critical value can be as high

as 52.18 in small samples (panel A4), but the critical values are still not large enough to overturn

the asymptotic analysis-based rejection of HS2
0 concluded in Section 4.4.2.

We find similar results for the post-1984 sample (panel B of Table 3), although statistics esti-

mated from the subsample are subject to less severe distortions than those from the full sample.

Particularly, the asymptotic analysis-based evidence against HS1
0 and HS2

0 post 1984 (panel B of

Table 2) is robust to small samples.

Overall, we draw three conclusions from Table 3. First, small-sample bias tends to decrease with

the bond maturity. Second, the asymptotic analysis-based evidence against HS1
0 and HS2

0 (Table 2

and also Internet Appendix IA.B) is too strong to be overturned. Third, results on descriptive

statistics show that none of the 5,000 artificial samples are able to generate a ∆R2 or ∆R2
oos that

exceeds the actual incremental R2.
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We present more robustness analyses in the Internet Appendix. Section IA.D shows that model

SM (2, 3) provides a more robust test of HS1
0 than does the DGP proposed in BH. Section IA.E

conducts the Ibragimov and Müller (2010) test of HS1
0 and HS2

0 that is robust to heteroscedasticity,

autocorrelation, and structural breaks, and finds that among the five yield factors and the SAGLasso

factor, the latter is the only robust bond return predictor. Finally, Section IA.F examines an

alternative version of HS2
0 where the conditioning variable Zt is the “cycle” factor of Cieslak and

Povala (2015) given that this factor is spanned. We find that this hypothesis is rejected as well.

To summarize, the results from our finite-sample analysis strongly reject the two spanning

hypotheses, suggesting that it is very unlikely for a spanned MTSM to account for the additional

predictive power of the SAGLasso factor as observed in our sample.

5.3 Testing the Macro-Unspanning Hypothesis

The rejection of the spanning hypotheses with Ft = Ĝt implies that MTSMs incorporating Ĝt may

be preferable to “yields-only” term structure models (YTSMs), say, for term premium inference.

Then a follow-up question is: Should Ĝt be used as a bond-pricing factor in an MTSM and if yes,

is Ĝt a spanned pricing factor? We address this question by formulating and testing the “macro-

unspanning hypothesis” (MUH), which intuitively says that in spite of its predictive power for bond

risk premia, Ĝt is not a spanned pricing factor.

5.3.1 The Macro-Unspanning Hypothesis

In the MTSM framework described in Section 5.1, the MUH (arising from the conditions specified

in JPS and BR for unspanned macro risks) can be stated as follows:

HUS
0 : δ1f = 0 and ΦQ

pf = 0. (12)

Under these restrictions, the short rate depends only on Pt (L linear combinations of zero yields),

and the Q-dynamics of Ft as represented by {µQf ,Φ
Q
fp,Φ

Q
ff} are not identifiable without information

from other asset markets. It follows that only risks of yield PCs are priced in the Treasury market.
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Namely, the one-period risk premium, ΣΛt, given below, is L-dimensional:

ΣΛt = µPp − µQp +
[
ΦP
pp − ΦQ

pp , ΦP
pf

]
Xt = λ0 + λ1Xt. (13)

For convenience, such an N -factor MTSM that satisfies HUS
0 is termed an unspanned model and

denoted USM (L,N ).

Note that when L = 3, HUS
0 represents the standard version of the MUH: Macro-based forecasts

are not spanned by the contemporaneous yield curve (equivalent to the case focused on in BR’s

likelihood-ratio tests). When L > 3, HUS
0 denotes a more general version that the predictive ability

of macro factors is not spanned by the filtration generated by the yield dynamics. We examine

both versions and thereby estimate both models SM (L,N ) and USM (L,N ) with L = 3, 4, 5 in

this analysis. To match the data sample used in JPS and BR, we estimate each of these six models

using zero yields with M = {0.5, 1, 2, 3, 4, 5, 7, 10} over the period 1985–2007.

Note also that HUS
0 is not simply the opposite of HS1

0 or HS2
0 . First, while HUS

0 concerns

whether a given macro factor with some explanatory power for term premia is a pricing factor,

HS1
0 and HS2

0 focus on whether variables outside of the bond market provide additional explanatory

power for bond risk premia. Second, term structure modeling implications from the outcome of

testing HS1
0 or HS2

0 are different from those of testing HUS
0 . For instance, suppose N = 5. Rejecting

HUS
0 implies a rejection of model USM (4, 5), where the alternative model is SM (4, 5); namely, it

is SM (4, 5) versus USM (4, 5). In contrast, rejecting HS2
0 implies that USM (5, 6) ought to be used

to infer the risk premium component in long-term yields, and accepting HS2
0 means that SM (4, 5)

(or YTSM (5)) should be used; that is, it is SM (4, 5) versus USM (5, 6).21

21As a result, a test of HUS
0 corresponds to a test of equal forecast accuracy for non-nested models in the regression

setting in Eq. (1). Suppose that Zt = PC 1−5,t and Ft = Gt. The question of interest is whether the additional
predictive power of Gt is captured by the six yield factors (i.e., PC 1−6,t) or any other six linear combinations of
“true” yields, similar to an encompassing test for comparing non-nested models: (PC 1−5,t, Gt) versus PC 1−6,t.
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5.3.2 Statistical Tests of the Macro-Unspanning Hypothesis

We conduct two tests of HUS
0 . One is a model-based likelihood ratio (LR) test. As there is no

analytic expression available for the limiting distribution under HUS
0 , we compute the critical values

of the test statistic based on the approximation method used by BR. However, the approximation

is done conservatively, and as a result, this LR test tends to under-reject HUS
0 .22 To circumvent

this problem and make a more robust inference, we perform another test of HUS
0 (a model-free test

in the spirit of BR) by directly testing the yield loadings on the SAGLasso factor without imposing

no-arbitrage restrictions. Given the assumption that all yields are observed with measurement

error, we can focus on the loading matrix B′M = (B′L,p,B′L,f ) in Eq. (11) in this model-free test. To

implement the test, we first estimate Eq. (11) with the OLS and then conduct LR tests of BL,f = 0.

Panel A of Table 4 reports the results from both the model-based (column 2) and model-free

(column 3) tests of HUS
0 , for L = N − 1 = 3, 4, 5. Note from column 2 that the LR statistics are

always smaller than the 10% critical values, ∀L. An unreported decomposition of the log-likelihood

function reveals that the difference between SM (L,N ) and USM (L,N ) mainly derives from the

Q-likelihood. This result, as documented by BR for L = 3 with two macro factors, is not surprising

as the restrictions in HUS
0 are not placed on the P-dynamics of USM (L,N ). However, our test

results show that the improved yield curve fitting of SM (L,N ) over USM (L,N ) is statistically

insignificant, in contrast to BR’s finding. The p-values reported in column 3 indicate that HUS
0 is

not rejected by the model-free test either at the conventional significance level of 5%, ∀L.

Results in panel A also suggest that the negative effect of excluding Ĝ from fitting the yield

curve becomes weaker when N increases. This finding is not surprising: Although the higher-order

PCs are considered to be unimportant in explaining cross-sectional variations in yields, they help

fit the term structure more or less. Thus, when an additional yield factor is included in the model,

22As discussed in BR, while HUS
0 imposes four zero restrictions for the case of L = 3, a comparison of test statistics

with the critical values of a χ2(4)-distribution would be misleading. Under the approximation adopted by BR (detailed
in their Section 3.1), test statistics are evaluated against a χ2-distribution with (k−N )(N +1)−1 degrees of freedom
when only one macro variable is used, where k is the number of bonds involved.
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the already limited role of Gt in the cross section becomes more redundant.

To summarize, when the SAGLasso factor is used as the sole macro factor of an unspanned

model, both the model-based and model-free tests fail to reject the MUH. As mentioned before, the

main reason for this finding is that in spite of its strong predictive power for excess bond returns,

the SAGLasso variable is weakly correlated with yield PCs and is unspanned (see Section 5.4). See

Internet Appendix IA.G for more applications of unspanned models.

5.4 Is the SAGLasso Factor Unspanned?

To examine whether the yield curve can explain the temporal variation in the SAGLasso factor, we

follow JPS and regress Gt on N observed yield PCs:

Gt = γ0 + γ1PC o
1−N ,t + εt. (14)

To see whether the regression R2 is low enough to invalidate spanned models, we follow BR and eval-

uate it against its distribution implied from an N -factor spanned model rather than against unity.

To this end, we consider distributions implied by “unconstrained” models as well as “constrained”

ones, and also allow for macro measurement error, denoted by ηf with a standard deviation of σηf .

In contrast, BR focus on unconstrained models with zero ηf . Unconstrained models here refer to

MTSMs imposing no constraints on the Sharpe ratio (SR) of bond returns. Such models may imply

unrealistic SRs, as noted in Duffee (2010) and Joslin, Singleton, and Zhu (2011). MTSMs with the

selected zero restrictions on {λ0, λ1} are referred to as constrained models and denoted CSM (L,N )

for spanned models and CUSM (L,N ) for unspanned models, with L being the number of yield

factors included in the model (see Internet Appendices IA.C and IA.G).

Panel B of Table 4 reports the empirical R2 value and its 95% confidence interval (in brackets

underneath) in column 5, where the interval is based on 5,000 data sets simulated from constrained

model CSM (N -1,N ), estimated with and without macro measurement errors, forN = 4, 5, 6. First,

consider the case without macro measurement errors (ηf = 0), a commonly made assumption in
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the macro finance literature (see, e.g., JPS and BR). The results show that ∀N , the empirical R2 is

around 14.5% and outside of its 95% confidence interval with a p-value (defined as the fraction of the

simulated samples in which the R2 is below the value in the actual data) lower than 2.5%. That is,

the SAGLasso factor indeed has R2 values too low to be reconcilable with spanned models. We also

evaluate empiricalR2s against their distributions implied from unconstrained models SM (·) and find

that the results are similar to those reported in panel B. Since we assume in our model estimation

that bond yields are all measured with error, the aforementioned results provide evidence that

yield measurement error does not account for the large proportion of unspanned macro variation

as observed in the real data in our sample.23

Next, we assume that ηf 6= 0. Intuitively, allowing for macro measurement errors would create

a further unspanned variation of Gt and thus make it more likely for spanned models to reproduce

documented regression evidence. We re-estimate model CSM (N -1,N ) assuming ηf 6= 0 and find

that the resulting implied R2 distributions are barely distinguishable from their counterparts with

zero ηf . For example, the 95% confidence intervals implied from model CSM (3, 4) with and without

macro measurement error are [0.587, 0.769] and [0.593, 0.847], respectively (column 5 of Table 4).

As a result, even if including ηf shifts the model-implied R2 distribution to the left, the net impact is

minimal; that is, unspanned macro variation observed in our sample cannot be attributed to macro

measurement errors either. Behind this finding is the tiny standard deviation of the measurement

error in Ĝt: σ̂ηf < 3 bps for 3 ≤ N ≤ 6. Note that as Ĝt is standardized under the SAGLasso

procedures (Section 4.2), σ̂ηf is negligible compared to the total standard deviation of Ĝt.

Panel B of Table 4 also includes the results from a spanning test applicable to macro factors

allowed to contain “noise” (Duffee 2013a): if yields span the true state vector, the regression

23BR consider regressions similar to Eq. (14) albeit with GRO or INF as the dependent variable; their simulation
results, based on unconstrained models, indicate that adding small yield measurement error makes spanned models
capable of generating the appearance of unspanned macro information in the real data. In an untabulated analysis we
show that the main reason for such simulation results is, however, that when a macro variable with a low correlation
to the yield curve is used as a spanned factor, most variation in this macro factor is captured by high-order yield
factors by construction; as a result, a spanned model with small yield measurement error can reproduce a large
amount of unspanned macro variation even if the macro variable under consideration is unspanned.
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in Eq. (14) should produce serially uncorrelated residuals even though the estimated R2 could

substantially deviate from one. The estimated first-order correlation of residuals of the regression

is around 0.67, 4 ≤ N ≤ 6 (column 6). Given that the serial correlation of Gt is 0.71, the above

result suggests that whatever the regression is missing cannot be explained by white-noise shocks.

Overall, the results of Section 5.4 provide strong evidence that much of the variation in Gt is not

captured by the yield curve. This unspanned nature of the SAGLasso factor reinforces our earlier

conclusion that it carries term premium information independent of the yield curve. Moreover, this

macro variable has very small measurement error even when it is included as a spanned factor in

a low-dimensional MTSM.

6 Conclusion

There is no consensus in the literature on whether or not macro variables have incremental pre-

dictive power for future excess bond returns over contemporaneous bond yields. However, macro

variables considered in the empirical literature are typically standard ones, such as measures of

real growth and inflation. These variables either show little unconditional predictive power for

bond risk premia or are highly correlated with contemporaneous yields and thus have insignificant

conditional predictive power. In this study we construct a new macro variable using Supervised

Adaptive Group LASSO (SAGLasso), a machine learning algorithm, from a panel of 917 macro

variables (131 macro series along with six of their lags) that are adjusted for both data revisions

and publication lags. We show that this new macro variable, termed the SAGLasso (macro) fac-

tor, has strong out-of-sample predictive power for bond risk premia conditional on the yield curve.

Additionally, this predictability can provide investors with significant economic gains.

Importantly, the SAGLasso factor is parsimonious, intuitive, and easy to interpret. Specifically,

it is a linear combination of merely 30 selected variables out of 917, and consists of a novel housing

factor, an employment factor, and an inflation factor. In addition, in spite of its strong predictive
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power, the SAGLasso factor has low correlations with contemporaneous yields by construction;

thus, it is a “pure” macro-based bond return predictor.

The SAGLasso macro factor also provides a potential resolution to the spanning controversy

in the macro-finance literature. First, the SAGLasso factor is not spanned by contemporaneous

yields. Second, in an MTSM with the SAGLasso factor as its sole macro factor, the hypothesis that

it is unspanned by the yield factors is not rejected. Third, incorporating the unspanned SAGLasso

factor into an MTSM with realistic Sharpe ratios has nontrivial economic benefits. Fourth, the

importance of the SAGLasso factor cannot be attributed to measurement errors in yields or itself.

Furthermore, its measurement error is small.

To summarize, using a machine learning algorithm we are able to construct a new, parsimonious,

and easy-to-interpret macro variable with strong and robust predictive power for bond risk premia.

In addition, this new macro factor can potentially help resolve the spanning controversy in the

macro finance literature. We use the algorithm to construct macro-based bond return predictors

in this study but SAGLasso should also be useful in similar big data applications in finance and

economics. For instance, we may construct a real-time expectation factor using the SAGLasso

algorithm and examine if the implied bond risk premia are consistent with those demanded by

investors in history (Piazzesi et al. 2015). This would allow us to explore an alternative explanation

for the spanning controversy: It is due to the discrepancy between the short-rate expectation of

real-time investors and the ex post estimates of an econometrician (Cieslak 2018).24 We may also

expand the macro panel data to incorporate survey forecasts of macro variables, which are shown

to provide additional information in term structure modeling (see, e.g., Chernov and Mueller 2012

and Kim and Orphanides 2012). We leave these questions to future research.

24In an earlier version of this paper, Huang and Shi (2010) provide evidence consistent with the potential mechanism
suggested by Duffee (2011). As noted in Cieslak (2018), these different explanations of the spanning controversy are
not, however, mutually exclusive because its resolution “depends on the particular variables that the econometrician
assumes a part of his/her information set” (p. 3269).

30



References

Ang, A., and G. Bekaert. 2007. Stock return predictability: Is it there? Review of Financial

Studies 20(3):651–707.

Bai, J., and S. Ng. 2008. Forecasting economic time series using targeted predictors. Journal of

Econometrics 146(2):304–317.

Bair, E., T. Hastie, D. Paul, and R. Tibshirani. 2006. Prediction by supervised principal compo-

nents. Journal of the American Statistical Association 101(473):119–137.

Bali, T. G., A. Goyal, D. Huang, F. Jiang, and Q. Wen. 2021. Different Strokes: Return Predictabil-

ity Across Stocks and Bonds with Machine Learning and Big Data. Working Paper, Georgetown

University .

Bauer, M. D., and J. D. Hamilton. 2018. Robust bond risk premia. Review of Financial Stud-

ies 31(2):399–448.

Bauer, M. D., and G. D. Rudebusch. 2016. Resolving the spanning puzzle in macro-finance term

structure models. Review of Finance 21(2):511–553.

Berardi, A., M. Markovich, A. Plazzi, and A. Tamoni. 2021. Mind the (Convergence) Gap: Bond

Predictability Strikes Back! Management Science, Forthcoming .
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A Notation and Frequently Used Terms

Spanning hypothesis I (HS1
0 ) Macro variables have no additional predictive power for excess bond

returns over the first three principal components (PCs) of the ob-
served yield curve

Spanning hypothesis II (HS2
0 ) Macro variables have no additional predictive power for excess bond

returns over the first five PCs of the noise-uncontaminated yield curve

Macro-unspanning hypothesis (HUS
0 ) So-called knife-edge restrictions given in Eq. (12) in the paper for a

macro-finance term-structure model (MTSM) to be unspanned

ĈG the convergence gap defined by Berardi et al. (2021)

ĈP the Cochrane and Piazzesi (2005) forward rate factor

Ĝ the (unconditional) the Supervised Adaptive Group LASSO (SA-
GLasso) macro factor constructed in this study

G̃ the recursive SAGLasso macro factor constructed in this study

ĝ1, ĝ2, and ĝ3 (unconditional) SAGLasso group factors constructed in this study,
representing “employment,” “housing,” and “inflation,” respectively

g̃1, g̃2, and g̃3 recursively constructed ĝ1, ĝ2, and ĝ3
Ĥ the hidden factor proposed by Duffee (2011)

L̂N
m

a modified Ludvigson and Ng (2009) macro-based return predictor

PC o
1−3 = (PC o

1,PC o
2,PC o

3) vector of the first three PCs of the observed yield curve

P̃C
o

1−3 recursively constructed PC o
1−3

PC 1−5 = (PC 1, . . . ,PC 5) vector of the first five PCs of the noise-uncontaminated yield curve

P̃C1−5 recursively constructed PC 1−5

CSM (L,N ) An N -factor constrained, spanned MTSM—Model SM (L,N ) with
restrictions on the model-implied Sharpe ratios of bond returns

CUSM (L,N ) An N -factor constrained, unspanned MTSM—Model USM (L,N )
with restrictions on the model-implied Sharpe ratios of bond returns

SM (L,N ) An N -factor spanned model—an N -factor MTSM with L (N − 1)
yield factors and one macro factor (the SAGLasso factor G) that does
not satisfy the macro-unspanning hypothesis HUS

0

USM (L,N ) An N -factor spanned model—an N -factor MTSM with L (N − 1)
yield factors and one macro factor (the SAGLasso factor G) that
satisfies HUS

0

YTSM (N ) An N -factor “yields-only” term-structure model
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B Macroeconomic Series Used in the Analysis

Two sets of 131 macroeconomic series are used in our empirical analysis. The first, the standard one

used in the literature, includes revised macroeconomic data. The second set consists of real-time

macroeconomic data only—the macro series adjusted for data revisions and publication lags.

Table A.1 lists the 131 macroeconomic series and contains the full name (column 4) of each

series, along with its series number (column 1), group number (column 2), mnemonic—the series

label used in the source database (column 3), short name (column 5), and data transformation flag

(column 6). The transformation flag = 1: no transformation applied to the series; flag = 2: the

first difference applied; flag = 3: the second difference; flag = 4: the logarithm; flag = 5: the first

difference of logarithm; and flag = 6: the second difference of logarithm.25

We compile our macro data in three steps. First, we match the panel of 131 series with ALFRED

and find that 70 of them are included in the latter. For each of the 70 matched series, we collect

its latest nine real-time observations at the end of each month (we do this because some macro

variables need to be transformed to their second-order log-differences). However, vintage versions

of these 70 series are not balanced and go back to 1964 for only 25 series. Nonetheless, only 3 out

of the 19 macro variables eventually selected by SAGLasso do not have their vintage data available

going back to January 1985. Therefore, the look-forward biases should have a minimum impact, at

least on our results obtained from the post-1984 sample.

Second, for the 45 incomplete series in ALFRED, we fill in their missing observations using data

over 1964–2007 provided by Ludvigson and Ng (2011) and our manually updated observations from

the Federal Reserve Economic Data and The Conference Board over the post-2007 period. As for

the 61 series not included in ALFRED, these variables are presumably not subject to revision.26

We obtain observations for these 61 series from the aforementioned two sources. We then adjust all

these macro variables for their publication lags; that is, for each of these time series, we calculate

25Second-order log-differences are the reason for keeping the latest nine observations at each point of historical time
for each of the 70 matched series in ALFRED (see Section 3). To see that, let xs|t denote the value of a particular macro
variable collected for calendar month s at the end of month t ≥ s. Suppose that this variable is released with a one-
month lag and needs to be log-differenced twice to attain stationarity. The final data to be included in the SAGLasso
procedures would be {∆2 lnxt−1|t,∆

2 lnxt−2|t, . . . ,∆
2 lnxt−8|t}, where ∆2 lnxt−1|t = lnxt−1|t−2 lnxt−2|t +lnxt−3|t.

26This conjecture is partially confirmed by checking observations of these macro series around the end of 2007.
The logic is as follows. The LN09 data set ceases its coverage of macro time series in December 2007. If a specific
macroeconomic measure (not included in ALFRED) is subject to data revision, its observations for the last couple
of months in their data set are likely from the first (preliminary) and second releases. These observations are then
compared with corresponding ones collected in 2015, which are definitely from the third (final) release. We find that
they are identical. Regardless, the main findings of this study are not affected by this conjecture. As mentioned
earlier, it turns out that among those macro series included in the SAGLasso factor, only three commodity price
indices have no vintage data available, and these indices should not be subject to revision.
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the integer number of months in the time interval between the end of the period over which it

is measured and its release date. As shown later, such adjustments matter in our predictability

analysis.

Finally, we investigate the time-series properties of these 131 series and determine transforma-

tions needed to stationarize each of these series. Table A.1 provides a complete list of the 131

series and, for each series, its data transforms applied, its publication lag, and the availability of

its vintage data.

Column 7 labeled “Ĝt” of Table A.1 shows the values of a flag indicating which of the 131

macroeconomic series has a nonzero coefficient for its contemporaneous and/or lagged values (up

to 6) in the SAGLasso regression. The flag value of “0” corresponds to the contemporaneous

variable, and the value of “`” denotes lag ` (in months), ` = 1, . . . , 6. For instance, macro series

#41 (CES048) in group 2—which measures the employment situation in the industry sector “Trade,

Transportation and Utilities”—is selected by the SAGLasso approach and has 2 variables (out of

7), the lag-5 and lag-6 values of the series, included in the SAGLasso macro factor Ĝ. In total, 19

out of the 131 series (30 out of the 917 macro variables) enter the Ĝ factor. Column 9 labeled “Lag”

reports each series’ publication lag (in months), which is defined as the time between the end of the

period over which the series is measured and its first release date. Note that out of the 131 series,

the four in group 8 “stock market” (#81 through #84) are the only ones without a publication

delay. The last column, labeled “vintage,” indicates which macro series has vintage data available,

where an asterisk denotes those series whose real-time series are available and used in our empirical

analysis. Note that out of the 19 series included in the Ĝ factor and two additional series (#42

and #53) included in G̃ (the out-of-sample version of Ĝ), the three commodity price indices (#111

through #113) are the only series that have no vintage data available in the ALFRED database.

However, given the nature of these three series, they should not be subject to revision.

C Supervised Adaptive Group Lasso Method

We first briefly review the group lasso (Yuan and Lin 2006). We begin with the following model:

Y = Xβ0 + e, (15)

where e is assumed to be a T -dimensional vector of i.i.d. errors (we will relax this assumption

later). The main assumption of the Group Lasso is that some subvectors of the true coefficients β0

are zero. We denote by h ∈ H1 = {h : β0h 6= 0} the unknown index set of non-zero subvectors of
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β0. Hence, the Group Lasso involves identifying H1 and estimating β0.

The method is usually implemented by estimating the following restrictive form:

min
β∈RN

{
‖y −Xβ‖2 + λ

∑
h

‖βh‖

}
. (16)

Note that expression (16) reduces to the Lasso when |H| = N and each h corresponds to the one-

dimensional subspace of RT spanned by the corresponding column of the design matrix X. In our

implementation, we consider the general Group Lasso and more specifically, the adaptive group

lasso, as follows:

min
β∈RN

{
‖y −Xβ‖2 + λ

∑
h

wh‖βh‖

}
. (17)

Next, we describe the Supervised Adaptive Group Lasso (SAGLasso) algorithm proposed in

Section 4.1. The method consists of two steps.

Step I: For cluster h ∈ H, compute β̂h—the cluster-wise Adaptive Lasso estimate of βh, namely,

β̂h = argmin
βh

‖arx−Xhβ
h‖2 +

∑
j

λh ∗ ŵhj |βhj |

 , (18)

where arx is a vector of average excess bond returns across maturity and ŵhj the j-th component

of ŵh, the vector of the (adaptive) weights. Zou (2006) recommends using β̂OLS to construct ŵh.

As collinearity is a concern in our case, we set ŵh = 1/|β̂RIDh |γh , where β̂RIDh is the best ridge

regression fit of arx on Xh. That is, for cluster h we only use macroeconomic variables within

that cluster to construct predictive models. The optimal pairs of (γh, λh) are determined using

five-dimensional cross-validations. It is worth noting that tuning parameters λh are selected for

each cluster separately in order to have different degrees of regularization for different clusters.

This flexibility allows us to uncover subtle structures that otherwise will be missed when applying

the (adaptive) lasso method to all the series/clusters at the same time.

Note that for each cluster h ∈ H, the adaptive lasso β̂h has only a small number of nonzero

components. Let β̃h = β̂h \ 0, the vector of nonzero estimated components of β̂h given by the

cluster-wise model (18), and denote the corresponding part of Xh by X̃h. In our case, a typical

cluster size (dim(Xh)) of 80 variables may reduce to a dim(X̃h) of 8 ∼ 10. Namely, the number of

macro variables selected in Step I is significantly smaller than the original number to begin with.

Step II: Construct the joint predictive model under the Group Lasso constraint as follows:

β̂ = argmin
β

{
‖arx− X̃β‖2 + λ

∑
h∈H

wh‖βh‖

}
, (19)
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where X̃ is formed by concatenating the design matrices X̃h. The parameter λ is also chosen by

five-fold cross-validation. With λ→∞, estimates of some components of β̃hs can be exactly zero.

Following Yuan and Lin (2006), we obtain the solution in Eq. (19) efficiently by using the modified

least angle regression selection algorithm of Efron et al. (2004).

In out-of-sample tests conducted in our analysis, tuning parameters {λh, λ} are selected recur-

sively starting from the beginning of the test period using cross-validation as well as information

only available at the time of estimation. However, to reduce the bias due to the limited training

sample size, we use ten-fold cross-validation for the first five years of the out-of-sample testing

period (e.g., the period 1985–1989 for the full sample). After that we go back to standard five-fold

cross-validation to restore the balance between bias and variance. Also, to reduce the computa-

tional burden in the finite-sample analysis (Section 5.2.2), we select {λh, λ} once for each quarter

rather than for each month; that is, {λh, λ} selected in January are also used to perform SAGLasso

model selection in February and March, until they are reselected in April.

Note that the SAGLasso algorithm differs from the supervised principal component analysis

(SPCA)—another two-step supervised learning approach—proposed by Bair et al. (2006) in a

biological setting, which has been applied to inflation forecasts in Bai and Ng (2008).27 For instance,

the former takes into account the underlying cluster structure of candidate variables, whereas the

SPCA does not consider all the candidates simultaneously. Also, variables selected in the SPCA are

the PCs whose economic interpretations may not be obvious even though they may have satisfactory

prediction performance. Factors constructed using SAGLasso, however, are easier to interpret.

Group Lasso is also applied by Freyberger et al. (2020) to identify firm characteristics in shaping

expected equity returns. In their analysis, each group consists of 20 portfolios associated with (a

polynomial function of) one characteristic, and model selection is done at the group level only.

In our analysis, each group consists of macro variables supposed to capture the same economic

concept, and Adaptive Lasso is used within each group (before model selection at the group level)

to further mitigate the curse of dimensionality and boost the out-of-sample performance.

27Gibson and Pritsker (2000) use partial least squares to choose risk factors of fixed-income portfolios. Goto and
Xu (2015) apply the graphical lasso to portfolio selection.
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Table 2: Out-of-Sample Performance Assessment

Panel A reports accuracy of out-of-sample forecasts from models with and without the
real-time macro factor G̃ as a return predictor. Benchmark predictors considered include
the first three principal components (PCs) of observed yields (P̃C

o

1−3,t) and the first five

PCs of the noise-uncontaminated yield curve (P̃C 1−5,t). The rows labeled “ENC-REG”
report the out-of-sample t-statistics proposed by Ericsson (1992), and those labeled “ENC-
NEW” report a variant of the ENC-REG statistic proposed by Clark and McCracken
(2001); both tests share the same null hypothesis that the benchmark model encompasses
the unrestricted model with excess predictors. “R2

oos” denotes the out-of-sample R2 of
Campbell and Thompson (2008), and the rows labeled “∆R2

oos” represent the incremental
R2
oos due to G̃. Panel B reports the certainty equivalent gains (in percentage) for a mean-

variance investor who selects an N -year bond (N ≥ 2) along with a 1-year bond and who
uses portfolios weights potentially depending on G̃-based forecasts. The investor’s risk
aversion coefficient γ is assumed to be either 3 or 5. The p-values of certainty equivalent
returns (in angle brackets) are based on an extended version of Diebold and Mariano
(1995) test. All out-of-sample forecasts are formed recursively, with a “training” period
of 20 years for the entire sample or that of 15 years in the subsample analysis.

Full sample, 1964–2014 Subsample, 1985–2014

maturity
2 3 4 5 2 5 7 10(year)

Panel A: Statistical significance

R2
oos 0.123 0.187 0.226 0.246 0.033 0.248 0.236 0.205

Panel A1: G̃t+P̃C
o

1−3,t vs. P̃C
o

1−3,t

ENC-REG 4.764 4.987 4.831 4.871 3.539 4.570 4.804 5.258

ENC-NEW 191.91 180.91 162.44 147.10 95.33 138.46 128.64 109.49

∆R2
oos 0.349 0.335 0.296 0.271 0.704 1.029 0.922 0.661

Panel A2: G̃t+P̃C 1−5,t vs. P̃C 1−5,t

ENC-REG 4.781 5.118 4.823 4.526 3.654 4.831 5.218 4.829

ENC-NEW 180.94 173.49 151.82 130.10 73.93 134.07 130.97 99.17

∆R2
oos 0.353 0.340 0.292 0.256 0.809 1.026 0.886 0.543

Panel B: Economic significance

Panel B1: Trading on G̃t vs. buy-and-hold

γ = 3 0.343 1.267 2.702 4.478 0.308 2.293 4.083 8.745

〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉
γ = 5 0.565 2.481 5.289 8.622 0.340 4.053 7.858 16.630

〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉

Panel B2: Trading on P̃C
o

1−3,t + G̃t vs. Trading on P̃C
o

1−3,t

γ = 3 0.432 0.510 0.504 0.449 0.579 1.131 1.133 0.750

〈0.008〉 〈0.019〉 〈0.016〉 〈0.012〉 〈0.018〉 〈0.018〉 〈0.009〉 〈0.004〉
γ = 5 0.292 0.289 0.277 0.239 0.407 0.682 0.685 0.450

〈0.022〉 〈0.028〉 〈0.022〉 〈0.019〉 〈0.057〉 〈0.031〉 〈0.009〉 〈0.004〉
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Table 3: Finite-Sample Properties of Test Statistics under Spanning Hypotheses
I and II

This table presents results based on finite-sample distributions of the statistics that are involved in tests
of Spanning Hypotheses I and II (HS1

0 and HS2
0 ). 5,000 bootstrapped samples are generated from spanned

term structure models, SM (L,N ), specified in Section 5.2.1; the length of each bootstrapped sample is set
to be consistent with either the entire data sample (panel A) or the post-1984 data sample (panel B). Results
in panels A1 through B2 (panels A3 through B4) are obtained from model SM (2, 3) (model SM (4, 5)) that
satisfies HS1

0 (HS2
0 ). Test statistics considered include those computed using the Hansen and Hodrick (1980)

GMM covariance estimator (HH) and the Newey and West (1987) HAC covariance estimator (NW) with 18
lags, and the out-of-sample ENC-REG test of Ericsson (1992) and ENC-NEW test of Clark and McCracken
(2001). For each set of test statistics, the 95th percentile of the bootstrap distribution is reported as the 5%
critical value, and the p-values (in angle brackets) are the frequency of bootstrap replications in which the
test statistics are at least as large as the statistic in the data. The “∆R2” and “∆R2

oos” measures denote
the incremental R2 and out-of-sample R2 of Campbell and Thompson (2008), respectively.

Panel A: Full sample, 1964–2014 Panel B: Subsample, 1985–2014

maturity
2 3 4 5 2 5 7 10(year)

Panel A1: In-sample under HS1
0 Panel B1: In-sample under HS1

0

HH 4.937 4.896 4.712 4.509 4.080 3.910 3.784 3.594

〈0.010〉 〈0.003〉 〈0.001〉 〈0.001〉 〈0.003〉 〈0.003〉 〈0.005〉 〈0.005〉
NW 5.064 5.010 4.839 4.654 3.984 3.867 3.714 3.509

〈0.006〉 〈0.003〉 〈0.001〉 〈0.000〉 〈0.001〉 〈0.000〉 〈0.001〉 〈0.001〉
∆R2 0.108 0.105 0.099 0.091 0.076 0.080 0.066 0.053

〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉

Panel A2: Out-of-sample under HS1
0 Panel B2: Out-of-sample under HS1

0

ENC-REG 4.285 4.195 4.095 3.940 3.421 3.282 3.158 2.996

〈0.026〉 〈0.018〉 〈0.019〉 〈0.015〉 〈0.045〉 〈0.012〉 〈0.008〉 〈0.004〉
ENC-NEW 51.03 50.39 47.716 43.622 18.710 17.392 15.596 13.439

〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉
∆R2

oos 0.167 0.163 0.153 0.139 0.147 0.147 0.122 0.095

〈0.000〉 〈0.001〉 〈0.001〉 〈0.001〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉

Panel A3: In-sample under HS2
0 Panel B3: In-sample under HS2

0

HH 5.054 4.987 4.909 4.783 4.190 3.947 3.782 3.727

〈0.005〉 〈0.002〉 〈0.002〉 〈0.002〉 〈0.004〉 〈0.003〉 〈0.005〉 〈0.007〉
NW 5.202 5.149 5.045 4.962 4.110 3.851 3.745 3.654

〈0.003〉 〈0.001〉 〈0.001〉 〈0.000〉 〈0.001〉 〈0.000〉 〈0.002〉 〈0.003〉
∆R2 0.117 0.113 0.109 0.103 0.083 0.078 0.070 0.063

〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉

Panel A4: Out-of-sample under HS2
0 Panel B4: Out-of-sample under HS2

0

ENC-REG 4.326 4.184 4.120 4.046 3.416 3.325 3.229 3.162

〈0.027〉 〈0.017〉 〈0.019〉 〈0.024〉 〈0.038〉 〈0.009〉 〈0.006〉 〈0.004〉
ENC-NEW 56.68 54.53 52.38 49.387 18.516 16.281 15.098 14.050

〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉
∆R2

oos 0.185 0.177 0.170 0.160 0.161 0.149 0.131 0.119

〈0.002〉 〈0.003〉 〈0.004〉 〈0.007〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉
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Table 4: Statistical Inference about Unspanned Macro Risks

Panel A reports results from likelihood-ratio tests of the macro-unspanning restrictions
(HUS

0 ), given in Eq. (12), that are imposed on an N -factor unconstrained macro-finance

term structure model (MTSM). Its underlying state vector is Xt = (PC1−L,t, Ĝt), where
PC1−L,t denotes the vector of the first L principal components (PCs) of the noise-

uncontaminated yield curve and Ĝt represents the SAGLasso macro factor. Model-based
test statistics (column 2) are evaluated against the critical values of a χ2-distribution with
degrees of freedom equal to (k−N )(N +1)−1, where k is the number of bonds involved.
Model-free test statistics (column 3) are evaluated based on the χ2(k)-distribution. The
p-values appear in angle brackets immediately beneath. Panel B considers the projection
of the SAGLasso macro factor (Ĝt) onto the first N PCs of the yield curve (PCo1−N ,t).

Column 5 shows regression R2s along with two sets of 95% confidence intervals based on
5,000 artificial samples simulated from model CSM(L,N ) as specified in Section IA.G.1
(which denotes the N -factor constrained MTSM with a spanned Ĝt and whose state
vector Xt = (PC1−L,t, Ĝt)). The confidence intervals in brackets beneath are obtained
under either the assumption that there is no macro measurement error (ηf = 0) or
that there is macro measurement error (ηf 6= 0), as indicated in column 4 where ηf
denotes macro measurement error (“Macro M.E.”). Column 6 reports the first-order
serial correlation of residuals.

(1) (2) (3) (4) (5) (6)

Panel A: Panel B:

Tests of unspanning restrictions Regressions of Ĝt on PCo
1−N ,t

N Model-based Model-free Macro M.E. R2 AR(1) of residuals

4 28.69 10.05 0.145

〈0.122〉 〈0.074〉 No (ηf = 0) [0.593 0.847]

Yes (ηf 6= 0) [0.587 0.769] 0.667

5 24.29 8.23 0.145

〈0.185〉 〈0.083〉 No (ηf = 0) [0.506 0.833]

Yes (ηf 6= 0) [0.459 0.784] 0.667

6 17.55 6.17 0.146

〈0.287〉 〈0.104〉 No (ηf = 0) [0.263 0.651]

Yes (ηf 6= 0) [0.239 0.630] 0.666
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Figure 1: Word Cloud from Selected Macroeconomic Series

This figure reports the list of words constituting the names of macroeconomic series that are selected
from the SAGLasso algorithm. Font size of a word is proportional to the frequency with which the
word appears in selected macroeconomic variables and their lags.
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Figure 2: The SAGLasso Factor and Excess Returns on the Five-Year Bond

This figure presents time variation in the normalized SAGLasso factor as well as excess returns on
the five-year bond over the sample period from January 1964 to December 2013. Shaded bars denote
months designated as recessions by the National Bureau of Economic Research.
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IA.A Inferring Higher-Order Yield Principal Components

This section examines the relation between PCs of observed yields and those of “true” yields to

provide justification for the use of filtered PCs in tests of Spanning Hypothesis II (HS2
0 ).

It is known that due to the negligible role of higher-order PCs in the cross section, it is difficult to

disentangle them from noise in yields. Panel A of Table IA.A1 illustrates the (limited) effectiveness

of direct Principal Component Analysis (PCA) in recovering information in true yields. Column

2 reports population correlations between true yield factors (PC 1−5,t) and PCs of the observed

yield curve (PC o
1−5,t), where the correlations are all computed from Monte Carlo simulations based

on an estimated five-factor yields-only (Gaussian) term structure model (YTSM). Note that while

corr(PC o
i,t,PC i,t) ∀i = 1, 2, 3 is very high (> 0.96), it is 0.72 for i = 4 and 0.21 for i = 5, suggesting

the inability of PCA to accurately infer PC 4,t and PC 5,t from yield data. This finding is not

surprising given the magnitude of yield loadings on the higher-order PCs: untabulated results

indicate that a one-standard-deviation shock to PC 4,t or PC 5,t does not change any yield by

more than seven basis points (bps). On the other hand, the estimated standard deviation of the

measurement error in yields is about six bps, which is enough to obscure the cross-sectional effects

of PC 4,t and PC 5,t.

In the real data sample, true yield factors are not observable. Duffee (2011) shows that filtering

techniques, while no substitute for direct observation, are helpful in retrieving information in those

higher-order factors. We find from an unreported simulation analysis that model-implied correla-

tions between true and filtered factors are higher than 0.85 for both the fourth and fifth factors.

As a result, we use filtered PCs in our empirical tests of HS2
0 .

Will it make a difference at all if we ignore the “hidden” nature of higher-order factors? Column

3 in panel A of Table IA.A1 shows that for these factors, the filtered and PCA-based estimates are

significantly different in our 1964–2014 sample.IA.1 More importantly, replacing the former with the

latter leads to underestimation of the predictive power possessed by the historical yield dynamics.

Panel B of Table IA.A1 presents results from regressions of excess bond returns on PC o
1−5,t

for two- through five-year maturities. Comparing the panel with Table IA.B5 (columns 10–13)

IA.1Joslin, Singleton, and Zhu (2011; Section 6) document very similar results over the sample period 1990–2007:
the model-implied filtered PC 1−3,t are nearly identical to PC o

1−3,t regardless of the model dimension, but PC o
4−5,t

do not closely correspond to their model-implied counterparts. Especially, the authors notice that filtered high-order
factors appear to be a smoothed version of PC o

4−5,t.
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reveals that replacing (filtered) PC 4−5,t by PC o
4−5,t results in lower R2 values, regardless of the

bond maturity, where for convenience those four R2 values from Table 2 are shown in the row

labeled “R2 (Table 2)” in panel B. Note that the decline in R2 ranges from 0.014 for the four-year

bond to 0.018 for the three-year bond (the second last row of panel B), and the percentage decrease

in R2 ranges from 5.49% for the four-year bond to 7.73% for the three-year bond (the last row).

Given that the first three factors alone can have an R2 of 16–19% (columns 2–5 of Table IA.B5),

the aforementioned amount of information loss in the fourth and fifth factors is far from trivial. As

such, using PC o
1−5,t in regression tests of HS2

0 would make the hypothesis overrejected.

IA.B More on Properties of the SAGLasso Macro Factor

This appendix further examines the properties of the SAGLasso macro factor (Ĝ). Section IA.B.1

investigates the predictive power of the three group factors which constitute the SAGLasso factor.

Section IA.B.2 examines whether the three group factors are spanned or not. Section IA.B.3

compares the predictive power of the Ĝ and Ludvigson and Ng (2009; LN09 hereafter) macro

factors. Section IA.B.4 investigates the potential impact of data revision and publication lags on

return predictability. Section IA.B.5 presents in-sample tests of the spanning hypotheses, HS1
0 and

HS2
0 . Lastly, Section IA.B.6 implements the SAGLasso algorithm using 131 macro variables along

with different numbers of their lags.

IA.B.1 Predictive Power of the Three Group Factors

The SAGLasso macro factor Ĝt consists of three group factors: the employment (ĝ1t), housing (ĝ2t),

and inflation (ĝ3t) factors. To better understand the information content of factor Ĝt, we examine

properties of these three group factors in this subsection. Let {ĝit}1≤i≤3 denote {ĝit, 1 ≤ i ≤ 3}.

IA.B.1.1 Sample Period 1964–2014

Table IA.B1 reports the Pearson correlation matrix of Ĝ, {ĝit}1≤i≤3, and five yield curve factors.

The five yield curve factors include the first three principal components (PCs) of observed bond

yields, {PC o
i,t, i = 1, 2, 3}, and the filtered higher-order PCs of noise-uncontaminated yields, PC 4,t

and PC 5,t. As expected, ĝ1t, ĝ2t, and ĝ3t all have low correlations with the yield curve factors. In
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particular, the novel housing factor ĝ2t has a correlation of -0.167 with PC o
1,t, -0.073 with PC o

2,t,

and 0.222 with PC o
3,t. As a result, Ĝ is weakly correlated with PC o

1−3,t and hardly correlated with

PC 4,t and PC 5,t. Recall that by construction the Ĝ factor and its three component factors control

for the Treasury and FX variables (group 5) out of the 131 macro series. The results shown in the

table verify that Ĝ and {ĝit}1≤i≤3 are all weakly correlated with the yield curve. Nonetheless, as

shown below these group factors have strong predictive power as a result of the SAGLasso procedure

used for model selection.

We now examine the predictive power of ĝ1t, ĝ2t, and ĝ3t, both individually and jointly. Panel A

of Table IA.B2 presents results from predictive regressions of excess bond returns on normalized ĝ1t,

ĝ2t, and ĝ3t, for 2-, 3-, 4-, and 5-year bonds in the full sample period. Panel A1 reports coefficient

estimates, t-statistics, and R-squared of univariate regressions on each of the three group factors.

Note that these factors all exhibit significant unconditional predictive power, with an R2 of 21–22%

for ĝ1t, about 14–15% for ĝ2t, and 17–18% for ĝ3t. Results from multivariate regressions, reported in

panel A2, show that the three group factors are still all significant and together have an (adjusted)

R2 ranging from about 40% for the 2-year bond to 43% for the 3-year bond.

As shown in Joslin, Priebsch, and Singleton (2014; JPS hereafter), the impact of macro risk

factors on bond risk premia depends on horizons. Panel A of Table IA.B2 illustrates the relative

importance of the three group factors across bond maturity. The univariate regression results

indicate that the regression coefficient on ĝ1t is the largest, followed by the one on ĝ3t, and the

coefficient on ĝ2t is the lowest, regardless of the bond maturity. The univariate regression R2

values exhibit the same pattern. In the multivarite regressions, the regression coefficients on the

three group factors maintain the same ranking, regardless of the bond maturity. These results

indicate that relatively speaking, among the three group factors, the employment factor (ĝ1t) is the

most important, followed by the inflation factor (ĝ3t), and then by the housing factor (ĝ2t). Note,

however, that these group factors are trained on the aggregate bond market returns rather than

returns on bonds with a specific maturity. Bianchi, Büchner, and Tamoni (2021) consider more

categories of macro variables and find that variables related to the stock and labor market (the

output & income and orders & inventories) are more important for the short-end (long-end) of the

yield curve.
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IA.B.1.2 Sample Period 1952–2014

The full sample used in this study is 1964–2014. However, it is known that the relationship between

interest rate and real activity changed significantly around 1964. This raises one concern about the

robustness of our evidence for the predictive power of ĝit, i = 1, 2, 3 and Ĝt based on the 1964–2014

sample: If we extend the sample to several years earlier, that may significantly change the results.

To address this concern, we reexamine the predictive power of these macro factors using the sample

extended to 1952, the year from which the data coverage of the original Fama-Bliss yields starts.IA.2

However, some macro series, especially those related to housing, are not available going back that

far; thus, we reconstruct the employment factor only in this robustness check, and denote the factor

constructed in-sample by ĝ∗1t and its out-of-sample version by g̃∗1t. Recall from Section 3 that the

“labor” group includes 32 series. As two of these series are no longer available when the sample

extends back to 1952, ĝ∗1t or g̃∗1t is constructed using the remaining 30 macro series.

Results from in-sample regressions, reported in panel B1 of Table IA.B2, indicate that the

predictive power of the employment factor is robust to the extended sample. Comparing panels A1

and B1, we see that the predictive power of ĝ∗1t is slightly weaker than that of ĝ1t in terms of the

magnitude of regression coefficients or R2 value but the coefficient on ĝ∗1t has greater t-value than

that on ĝ1t, regardless of the bond maturity.

In the out-of-sample tests, the training period is 20 years, which is close to the 21-year period

length adopted in our full-sample (1964–2014) analysis. In other words, the employment factor is

reconstructed every month after December 1971 using Adaptive Lasso within a given group, and the

predictive regression is also reestimated recursively. As before, we consider the following three out-

of-sample statistics: the “ENC-REG” (Ericsson 1992 ), the “ENC-NEW” (Clark and McCracken

2001), and the out-of-sample R-squared “R2
oos” (Campbell and Thompson 2008) statistics. The

results shown in panel B2 of Table IA.B2 indicate that g̃∗1t has significant out-of-sample predictive

power for every bond considered. Additionally, R2
oos increases in the bond maturity, ranging from

0.155 for the 2-year bond to 0.169 for the 5-year bond.

Overall, the above results provide evidence that the predictive power of the employment factor

(one main component of the SAGLasso single factor Ĝt) is robust to the longer sample 1952–2014.

IA.2The supplement to Cochrane and Piazzesi (2005), available at http://www.stanford.edu/~piazzesi/cp.zip,
suggests that Fama-Bliss yield data prior to 1964 is unreliable.
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IA.B.2 Spanning Properties of the Group Factors

Having examined the predictive power of the three group factors, we explore, to what extent, each

of the three factors is spanned or unspanned in this subsection.

Recall from Table IA.B1 that ĝ1t, ĝ2t, and ĝ3t all have low correlations with the yield curve

factors. In an untabulate analysis, we find that the three group factors are not highly correlated

with GRO (growth) and INF (inflation) either, two standard single macro variables used in the

literature. Unsurprisingly, the largest correlation (0.497) occurs between the two inflation factors,

ĝ3t and INF t. The correlations between INF t and the other two group factors are 0.237 for ĝ1t and

0.144 for ĝ2t. The growth variable GRO has a correlation of -0.013, 0.167, and -0.015 with ĝ1t, ĝ2t,

and ĝ3t, respectively. These findings suggest that the three group factors are viable candidates for

unspanned macro variables.

We examine whether the three group factors are spanned by the yield curve, following Section 5.4

that conducts a similar analysis for Ĝt. That is, for each of the three group factors, we first regress

the factor on the first R PCs of the yield curve (PCo1−R,t), where R = 3 or 6; we then evaluate

the regression R2 against its distribution implied from a constrained and spanned model; we also

estimate the first-order correlation of residuals from the regression to see if the residuals are serially

uncorrelated. The model used here to generate distributions of R2 is model CSM (3, 6)group, whose

state vector includes three yield curve factors (the first three PCs) and three macro factors, ĝ1t, ĝ2t,

and ĝ3t. The estimation of the model is done under the assumption that the three macro factors

are measured either with or without errors.

Table IA.B3 reports the regression results for each of the group factors with R = 3 (panel A)

or 6 (panel B). Column 2 indicates whether the three macro variables are assumed to be measured

with errors in the estimation of model. Columns 3 (panel A) and 5 (panel B) show the regression

R2s, and in brackets beneath are reported 95% confidence intervals based on 5,000 artificial samples

simulated from model CSM (3, 6)group. Columns 4 (panel A) and 6 (panel B) report the first-order

serial correlation of regression residuals. Clearly, the regression R2 is outside of the 95% confidence

intervals for each of the group factors in either panel. Moreover, even the smallest estimated

first-order serial correlation is around 90%, suggesting that much of the persistent component is

mistakenly treated as white-noise shocks. All of the evidence indicates that the three SAGLasso
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group macro factors {ĝit, 1 ≤ i ≤ 3} are not spanned by the yield curve factors.

IA.B.3 Comparison with the Ludvigson and Ng (2009) Factor

The LN09 single factor, constructed through dynamic factor analysis and BIC-based stepwise pre-

dictive regression, is
−→
F6t = (F̂1t, F̂

3
1t, F̂2t, F̂3t, F̂4t, F̂8t), the particular polynomial function of LN09’s

eight dynamic factors that minimizes the BIC over the sample period 1964–2003. However, using

our panel of 131 “real-time” macro series over 1964–2014, we find that the selected subset includes

−→
F7t = (F̂1t, F̂

3
1t, F̂2t, F̂5t, F̂

2
5t, F̂8t, F̂

2
8t),

IA.3 whose R2 value is 0.256, higher than 0.214 of
−→
F6t’s.

Hence, we let L̂N
m

t (the modified LN factor) be
−→
F7t in our empirical analysis.

Although both Ĝ and L̂N
m

are extracted from the same set of 131 macro series, they differ in

several aspects. First, whereas L̂N
m

includes all 131 series and squares and cubes of these macro

variables, Ĝ is a linear combination of 19 series and some of their lagged variables, and consists

of three easy-to-interpret macro group factors. Second, in terms of economic interpretation, Ĝ

includes a housing factor that contributes little to L̂N
m

, whose important components are the

“real activity” (highly correlated with measures of employment and production such as IP growth),

“inflation,” and “stock market” factors. Also, Ĝ includes no variables from the “bond and FX”

group and thus is much less correlated with the yield curve than L̂N
m

is. Lastly, by construction

Ĝ takes into account the dynamic response of bond risk premia to macroeconomic innovations. In

contrast, information on term premia does not enter L̂N
m

until the last step of its construction.

Panel A of Table IA.B4 reports the prediction results based on L̂N
m

t for the full sample. Results

from the in-sample analysis reported in panel A1 show that L̂N
m

t is significant, regardless of the

bond maturity, and that the R2 increases in the bond maturity, ranging from 0.168 for the 2-year

bond to 0.250 for the 5-year bond. Recall from panel A1 of Table 1 that the R2 from regressions on

Ĝt ranges from 0.352 for the 2-year bond to 0.392 for the 5-year bond. The difference between this

R2 and that of L̂N
m

t is 0.18, 0.16, 0.15, and 0.14 for the 2-, 3-, 4-, and 5-year bonds, respectively.

These results indicate that Ĝt has a greater predictive power than L̂N
m

t for excess bond returns.IA.4

Results from the out-of-sample analysis also support this conclusion, as can be seen from evidence

shown in panel A2 of Table IA.B4 for L̂N
m

t and that in panel A of Table 2 for Ĝt. To summarize,

IA.3The variable F̂ 2
5t is also selected by Ludvigson and Ng (2011), who consider the sample period 1964–2008.

IA.4This finding is robust in the post-1984 sample period (untabulated).
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even though Ĝt is linear and much more parsimonious than L̂N
m

t , the former predictor shows

stronger predictive ability than the latter in both in-sample and out-of-sample analyses.

IA.B.4 Data Revisions, Publication Lags, and Return Predictability

The SAGLasso macro factor Ĝ (as well as L̂N
m

considered before) is constructed based on the set

of 131 macro series compiled in this study that adjust for both data revisions and publication lags.

This subsection examines the impact of these two adjustments on bond return predictability.

To this end, we construct two new macro factors using the same SAGLasso procedure as de-

scribed before in Section 4 but with different macro data. The first factor, denoted Ĝrevt , is con-

structed based on the set of the same 131 macro series that, however, adjust for publication lags

only (and not data revisions). The other new macro factor, denoted Ĝrev,lagt , is constructed based

on the set of the 131 macro series that does not adjust for either data revisions or publication

lags—namely, the original set of macro series used in LN09 less the one series no longer available.

Panel B of Table IA.B4 reports the results from predictive regressions of excess bond returns on

Ĝrevt from both in-sample (panel B1) and out-of-sample (panel B2) analyses. Comparing panel B1

with panel A1 of Table 1 reveals that both the regression coefficient on Ĝrevt and its in-sample R2

are slightly larger than those for Ĝt except for the 2-year bond. Similarly, the out-of-sample R2
oos

of Ĝrevt (panel B2 of Table IA.B4) is slightly higher than that of Ĝt (panel A of Table 2), regardless

of the bond maturity. These findings indicate that the predictive ability of Ĝt is slightly inferior to

that of Ĝrevt . In other words, data revisions inflate the predictability only slightly in our sample.

Conversely, results reported in panel C of Table IA.B4 show that return predictability is sub-

stantially exaggerated if publication lags are not adjusted. For instance, the in-sample R2 of Ĝrev,lagt

is 0.414, 0.441, 0.453, and 0.464 for the 2- through 5-year bonds, respectively (panel C1) and is

much higher than that of Ĝt (panel A1 of Table 1). The increase in the R2 ranges from 6.2% for the

2-year bond to 7.2% for the 5-year bond. That is, the inflated predictability is especially notable in

the in-sample regressions. The out-of-sample evidence shown in panel C2 of Table IA.B4 (based on

Ĝrev,lagt ) and panel A of Table 2 (based on Ĝt) also indicates that ignoring publication lags inflates

the predictability, albeit to a lesser degree.

To summarize, we find that publication lags pose much greater “danger” than data revisions in

forecasting future bond returns based on macro variables, at least in our sample. This problem can
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be mitigated straightforwardly, however, since in practice it is easier to make an adjustment for

publication lags than to figure out preliminary macro data releases and adjust for data revisions.

Note that the main finding of this subsection is consistent with Ghysels, Horan, and Moench

(2018), who document that using revised macro series inflates the predictive power of macro vari-

ables. However, while they focus on a particular macro variable—“total non-farm payroll employ-

ment” (#33 on our list of 131 series)—and find that both data revisions and publication lags are

highly important, we examine the impact of these two elements on a large panel of macro time

series and find that the predictive power of the SAGLasso (aggregate) macro variable is robust

to the use of vintage data. Namely, the importance of revision/delay biases depends on specific

macro series, especially given that variable #33 itself is not included in Ĝ (see Table A.1 in the

paper). This implication is consistent with Ghysels et al. (2018) too. In a robustness analysis, they

consider the Chicago Fed National Activity Index (an unsmoothed version of macro variable GRO)

and find that the combined effect of publication lags and data revisions on these two aggregate

macro variables is small. Also, Barillas (2012) finds that the bond return predictability is robust to

the use of real time series for 16 macro variables (7 inflation and 9 real growth measures) considered

in his study.

IA.B.5 In-Sample Spanning Tests

This subsection tests the spanning hypotheses, HS1
0 and HS2

0 , by examining the incremental pre-

dictive power of Ĝ over the yield curve. As before, we focus mainly on the test statistics based on

the HH or NW standard errors in the discussion of test results that follows.

Table IA.B5 presents the results based on the full sample. Results from regressions on PC o
1−3,t,

reported in columns 2–5, indicate that only PCo2,t is significant and that the R2 ranges from 0.156

for the 3-year bond to 0.194 for the 5-year bond. Results from each of the above regressions

augmented with Ĝt, reported in columns 6–9, show that Ĝ is significant regardless of the bond

maturity. The incremental R-squared due to Ĝ, ∆R2, ranges from 0.243 for the 5-year bond to

0.262 for the 3-year bond. These results provide strong evidence against HS1
0 .

Results from regressions on PC 1−5,t, shown in columns 10 through 13, indicate that in addition

to PC 2,t, the higher-order PC 4,t and PC 5,t are also significant for most bonds.IA.5 The R2 ranges

IA.5Internet Appendix IA.A presents empirical evidence that the PCA of the observed yields is unable to effectively
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from 0.221 for the 2-year bond to 0.255 for the 4-year bond. Augmenting these regressions with

Ĝt yields a ∆R2 ranging from 0.232 for the 5-year bond (column 17) to 0.253 for the 3-year bond

(column 15). Importantly, Ĝt is significantly different from zero regardless of the bond maturity

and standard errors used, indicating a rejection of HS2
0 . In addition, PC 2,t and PC 4,t become less

significant (and insignificant for the 2- and 3-year bonds) in the presence of Ĝt.

The results for the post-1984 sample, reported in Table IA.B6, are qualitatively the same as

those for the full sample. Particularly, Ĝt is significant, regardless of the bond maturity and

standard errors used, conditional on either PC o
1−3,t (columns 6–9) or PC 1−5,t (columns 14–17);

namely, HS1
0 and HS2

0 are strongly rejected by the post-1984 sample too. Compared with its

counterparts for the full sample (Table IA.B5), ∆R2 due to Ĝt is actually higher except for the

2-year bond. For instance, ∆R2 from regression tests of HS1
0 for the 5-year bond is 0.297 for the

post-1984 sample (column 7) and 0.243 for the full sample (column 9 in Table IA.B5). Regarding

the impact of PCs in the presence of Ĝt, PC o
1,t (PC o

2,t) remains significant for the 2- and 5-year

bonds (10-year bond) in the tests of HS1
0 . For regression tests of HS2

0 (columns 14–17), PC 1,t is

significant regardless of the bond maturity, PC 2,t is significant for the 7- and 10-year bonds, and

PC 5,t for the 2-year bond only.

An earlier version of the paper also considers test statistics based on Hodrick 1B standard

errors. We find that Ĝ remains significant regardless of the bond maturity, whereas some of the

PCs become insignificant. For instance, PCo2,t remains significant only for the 4- and 5-year bonds

and is subsumed by Ĝt regardless of the bond maturity.

In summary, when factor Ĝ is used as the macro-based return predictor, our in-sample test

results show that this new macro variable has predictive power above and beyond the contempo-

raneous yield curve or yield dynamics, and thereby reject both Spanning Hypotheses I and II.

IA.B.6 Tests Using Macro Variables with Different Lags

So far the SAGLasso algorithm has been implemented using 131 macro variables along with six

of their lags. In this subsection we address the following two questions: (1) Are lags of macro

variables are essential to maintain the predictive performance as documented in Section 4, given

disentangle higher-order PCs from noise in yields. Filtered higher-order PCs (PC 4−5,t) contain more information
about bond risk premia than higher-order observed PCs (PC o

4−5,t).
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that 21 constituent variables (out of 30) of G are lagged? (2) If so, what is the optimal number of

lags to be included in our supervised learning?

These are nontrivial questions as a panel of macro data with no lags or a small number of

lags has a denser structure and might deliver better out-of-sample performance given the limited

length of the training period. To see this, recall that tuning parameters are selected using cross-

validations in the SAGLasso algorithm (see Appendix C). Therefore, as we include more and more

lags, the estimation process is inevitably subject to more “noise”, which could overweigh benefits

of incorporating more historical information in the construction of the SAGLasso factor.

In what follows, we repeat the analysis in Section 4.1 using 131 macro variables along with NL

of their lags, where NL = 0, 3, 9, 12. To be more specific, for each value of NL, we first reconstruct

the SAGLasso factor following the procedures described in Appendix C and then examine the

predictive power of the reconstructed SAGLasso factor.

Figure IA.B1 depicts the unconditional predictive power of the SAGLasso factor constructed

using the macro data with NL = 0, 3, 6, 9, 12. For brevity, we report the results for 2-year and

5-year bonds only. Panel A shows that including lags clearly enhances the in-sample predictive

power of the SAGLasso macro factor.IA.6 However, using more lags does not necessarily raise the

R2 value: it is the highest with NL = 3 for the 2-year bond and with NL = 6 for the 5-year bond.

As discussed above, including more than 6 lags may induce nontrivial sampling variability

of the SAGLasso estimates that is sufficiently large to offset the gains from using more data.

This conjecture is confirmed by the results for the out-of-sample R2 shown in Panel B. Since the

SAGLasso factor is estimated recursively (with a rolling 20-year window) in the out-of-sample

analysis, we face greater uncertainty compared to the in-sample estimation. As a result, we find

that the SAGLasso factor with NL = 9 or 12 hardly outperforms the SAGLasso factor with NL = 0

(no lag) in terms of the out-of-sample R2.

Overall, the results shown in Figure IA.B1 suggest that the SAGLasso factor constructed using

the 131 macro variables along with 3 or 6 of their lags has the best performance in both the in-sample

and out-of-sample predictions. This finding reflects a trade-off between including more information

IA.6Note that including lags into the SAGLasso algorithm does not simply lead to an expansion in the set of selected
macro variables. Instead, the coefficients of some previously selected (contemporaneous) variables are shrunk to zero,
“crowded out” by more powerful lagged variables. For example, 29 macro variables are selected with NL = 0, but
only 9 of them have nonzero coefficients with NL = 3.
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in the supervised learning and imposing a denser data structure to enhance the estimation stability.

While the baseline SAGLasso factor (with NL = 6) seems to capture more information on long-term

bond premiums, the alternative SAGLasso factor with NL = 3 outperforms for short-term bonds.

Next, we examine whether or not the choice of lag length affects our inferences with respect to

Spanning Hypotheses I and II. We test these two hypotheses using the above SAGLasso factor with

different values of NL and report the test results in panels A and B of Table IA.B7, respectively.

As before, the test statistics used include the Hansen-Hodrick one, the Newey-West statistic, and

∆R2 (the incremental in-sample R2) for the in-sample tests, as well as the ENC-REG statistic,

the ENC-NEW statistic, and ∆R2
oos (the incremental out-of-sample R2). Note that both of the

spanning hypotheses are overwhelmingly rejected in both the in-sample and out-of-sample tests,

regardless of the value of NL considered. In particular, the two hypotheses are strongly rejected

when no lags (NL = 0) are used in the construction of the SAGLasso factor.

Finally, we perform the finite-sample analysis based on the SAGLasso factor with NL = 3.

Untabulated results show that the finite-sample critical values of the aforementioned six statistics

are fairly close to their counterparts as reported in Table 4. It follows that this newly formed macro

factor still results in a rejection of the two spanning hypotheses. Therefore, an alteration to the

lag length does not change the conclusion on the finite-sample tests.

To summarize, our test results indicate that the choice of lag length hardly affects the our

inferences with respect to the two spanning hypotheses.

IA.C Estimation and Selection of MTSMs

It is mentioned in Section 5.2.2 that in our estimation of MTSMs we use the canonical form of

Gaussian MTSMs developed by Joslin, Le, and Singleton (2013; hereinafter JLS). This section

reviews the JLS canonical form first. We then discuss restrictions on risk premium parameters.

IA.C.1 The Joslin, Le, and Singleton (2013) Canonical Form

We follow the JPS framework for MTSMs in Section 5.1. However, for the purpose of estimation, it

is convenient to use a slightly different parameterization that is consistent with the JLS canonical

form (following JPS and Duffee 2013a). Building on the Joslin, Singleton, and Zhu (2011) canonical
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form for YTSMs, the JLS canonical form defines the most general admissible Gaussian MTSM for

a given dimension of the state vector.

Denote the state vector satisfying the JLS canonical form is denoted by X∗t . Its Q-measure

dynamics and the resulting bond pricing formula are

rt = rQ∞ + ı ·X∗t , (IA.C1)

X∗t = Φ∗Qx X∗t−1 + Σ∗xε
Q
t , (IA.C2)

y
(m)
t = A∗m(ΘQ

Y ) +B∗m(ΘQ
Y )′X∗t (IA.C3)

where rQ∞ denotes the long-run mean of the short rate under Q,IA.7 ı is a vector of ones, Φ∗Qx −I has

the real Jordan form determined by the eigenvalue vector γQ, and Σ∗x is lower triangular. Under

this representation, ΘQ
Y ≡ {γQ, rQ∞,Σ∗x} governs X∗t ’s Q-dynamics and thus fully determines bond

pricing. Coefficients A∗m and B∗m are given by

B∗m =
1

m

(
I − Φ∗Qx

′
)−1 (

I − (Φ∗Qx
′)m
)
ı,

A∗m = rQ∞ −
1

2m

m−1∑
i=1

B∗i
′Σ∗xΣ∗x

′B∗i .

While the state vector X∗t defines the minimum number of parameters shaping the risk-neutral

distribution of bond yields, it keeps silent about the role of macro factors Ft in bond pricing. Unless

the macro-unspanning restrictions, as specified in Eq. (12), are imposed, Ft are included in MTSMs

as pricing factors, i.e., there is a linear mapping between Ft and X∗t as follows:

Ft = Af +BfX
∗
t .

For ease of notation, in the discussion that follows in this this subsection, we drop the sub-

script/superscript M from YMt and {A∗M,B∗M}, where M denotes the maturities of zero yields to

be considered. Suppose that the yield-curve factors in Xt are defined by a full-rank loading matrix

IA.7In the JSZ canonical form there is no constant term in the short-rate equation (IA.C1). Instead, there is a
constant term in the transition equation:

X∗t = µ∗Qx + Φ∗Qx X∗t−1 + Σ∗xε
Q
t ,

where µ∗Qx = (uQ
∞, 01×(N−1))

′. However, as long as X∗t is stationary under the risk-neutral measure and the first

element of γQ is non-repeated, rQ∞ and uQ
∞ are interchangeable in defining the canonical form: rQ∞ = −uQ

∞/γ
Q
1 .
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WL ∈ RL×L, i.e., Pt = WLYt. It follows that the latent state vector X∗t can be rotated to Xt
IA.8

Xt = Γ0 + Γ1X
∗
t ,

where

Γ0 =

WLA∗
Af

 ,Γ1 =

WLB∗
Bf

 .
The resultant bond-pricing coefficients for the rotated state vector Xt are

Bm = Γ−1
1
′B∗m,

Am = A∗m −BmΓ0.

This leads to a closed-form expression for the probability density function of observed yields con-

ditional on Xt, which completes the maximum likelihood estimation.

Note that {Am, Bm}, defined in Eq. (8), depend on ΘQ
M ≡ {γQ, rQ∞, Af , Bf ,Σ∗x} ⊃ ΘQ

Y . As such,

adding macro factors to DTSMs allows for greater flexibility in fitting the conditional distribution

of bond yields, as evidenced by the (N −L)(N + 1) additional free parameters in MTSMs.IA.9

Even if we ignore the additional flexibility offered by Ft, it is preferable to factorize the condi-

tional likelihood function in terms of Xt = (P ′t, F ′t), as opposed to latent factors X∗t . First, if the

yield portfolios as represented by Pt are assumed to be priced perfectly (JSZ; JPS), the P-measure

conditional density of state variables, l(Xt|Xt−1, µ
P
x,Φ

P
x,Σx), can be assessed with standard linear

projection; JSZ show that the OLS leads to ML estimators of {µPx,ΦP
x}. Second, even if we allow

all yields to be measured with error, an OLS regression of Xo
t (= Xt+ηt) provides fairly reasonable

starting values in the estimation of {µPx,ΦP
x,Σx}.

IA.C.2 Selection of MTSMs

In Sections IA.G.2 and IA.G.3 of the paper, we follow JPS and conduct a large-scale search for the

best set of zero restrictions on risk premium parameters in constrained models CSM (L,N ) and

CUSM (L,N ). This section provides details of this analysis.

IA.8The invariant transformation from X∗t to Xt calls for the loading matrix WL. As the number of yield factors
L ≤ 5 in models considered in Sections 5.2 and IA.G, WL is estimated based on model YTSM (5) (see Internet
Appendix IA.A for details). Unreported results show that the first three rows of W5 are almost identical to those of
W o

5 (as well as the loading matrix implied from model YTSM (3)), but there is substantial difference in the remaining
rows.
IA.9Therefore, model SM (L,N ) has 2.5N 2 + 3.5N −NL− L+ 2 parameters in total to estimate.
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Recall from Section IA.G.1 that CSM (L,N ) and CUSM (L,N ) denote N -factor constrained,

spanned and unspanned MTSMs, respectively, where the underlying state vectorXt = (PC 1−L,t, Ĝt)

and PC 1−L = (PC 1, . . . ,PCL) denotes the first L PCs of bond yields. The one-period risk premium

is as specified in Eq. (13):

ΣΛt = λ0 + λ1Xt = λ0 + λ1 · (PC 1−L,t, Ĝt)
′,

where risk premium parameters λ0 and λ1 are an N -dimensional vector and an N × N matrix,

respectively. In the discussion below, we focus on the selection of spanned models CSM (L,N ).

The selection of unspanned models is done similarly.

Table IA.C1 shows the maximum likelihood estimates of λ0 and λ1 in models selected by BIC,

under CSM (3, 4) (panel A), CSM (4, 5) (panel B), and CSM (5, 6) (panel C), respectively. Note from

the three panels that while the estimates are model dependent, they show three robust properties

that hold regardless of the model dimension N .IA.10 First, both λ1(1,N ) and λ1(2,N ) are negative

and statistically significant, ∀N = 4, 5, 6. For instance, λ1(1, 4) = −6.11e-4 and λ1(2, 4) = −1.45e-4

(panel A); and λ1(1, 6) = −6.47e-4 and λ1(2, 6) = −2.60e-4 (panel C). This finding suggests that

Ĝt drives time variations in both expected excess returns to PC1 and PC2. In addition, note that

the ratio, λ1(1,N )/λ1(2,N ), ranges from 2.5 (N = 6) to 6.2 (N = 5), suggesting that Ĝt influences

excess bond returns mainly through its impact on the “level” risk premium.

Second, in all three models {CSM (N -1,N ), N = 4, 5, 6}, the risk premium driving factors

include the first two factors that govern the market prices of “level” and “slope” risks, and the first

one appears more important in shaping the unconditional bond risk premia (Koijen et al., 2010).

More specifically, persistent contributors to the first risk-premium factor include PC 1,t, PC 2,t and

Ĝt; those to the second risk-premium factor include PC 3,t and Ĝt. Furthermore, if a model, say,

model CSM (5, 6), allows for hidden yield factors, then the level risk premium significantly varies

with the fifth PC as well (row 1 in panel C). Note that conditioning only on yield curve information

(and not on macro variables), the models of Cochrane and Piazzesi (2008) and Duffee (2011) suggest

that variations in expected excess bond returns are driven by a single factor.

Third, rows corresponding to {PC i,t, i ≥ 3} in both λ0 and λ1 are uniformly zero in every

panel. Hence, among yield PCs only the level and slope risks are priced. This result coincides with

IA.10Unreported results indicate that these three properties also emerge in our model selections for unspanned models.
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JPS’s finding. Duffee (2010) also documents that there are two factors driving the variation in

risk premium and presents evidence that this is a robust property of models with the Sharpe ratio

constraints. These findings in turn help explain why the restrictions placed on λ0 and λ1 make

model-implied Sharpe ratios consistent with ones observed in data.

Note that while all three models, CSM (N -1,N ) with 4 ≤ N ≤ 6, imply non-zero compensation

for exposure to the macro risk, the loadings of relevant risk premium on state variables are not

robust across models as shown in the last row in each panel. One implication of this result is that

the loadings on macro state variables may be difficult to estimate robustly via yield factors in a

spanned model. On the other hand, unspanned models are not subject to this problem as λ0 and

λ1 include no such rows on unspanned macro factors (untabulated).

IA.D Data-Generating Processes Based on VARs

Section 5.2 of the paper presents a finite-sample analysis of Spanning Hypotheses I & II using

MTSMs as data-generating processes (DGPs). This section examines an alternative, VAR-based

DGP, generated using an approach proposed by Bauer and Hamilton (2018) to address small-sample

issues in testing Spanning Hypothesis I (HS1
0 ).

We first illustrate that the parametric bootstrap design proposed in Bauer and Hamilton (2018;

BH hereinafter) is actually more suitable for testing the unconditional predictive power of macro

variables than testing HS1
0 . We then show that the spanned MTSM specified in Section 5.2.2

provides a more robust test of HS1
0 in finite sample analysis than does the VAR-based DGP.

IA.D.1 VAR-based DGPs

BH model the joint dynamics of bond yields and a j-dimensional macroeconomic vector Ft using

the following restricted VAR system:

Y o
t = UM · PC o

1−3,t + εt, (IA.D4)PC o
1−3,t

Ft

 =

µp
µf

+

Φpp 03×j

0j×3 Φff


PC o

1−3,t−1

Ft−1

+

 Σp 03×j

0j×3 Σf


εPt
εFt

 (IA.D5)
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where Y o
t denotes the time-t observed yields of k zero-coupon bonds with maturitiesM = {m1, . . . ,mk},

UM is a k × 3 matrix with columns equal to the first three eigenvectors of the variance matrix of

Y o
t , and the diagonal matrix εt represents fitting errors.

We aim to show that the parameter restrictions specified in Eq. (IA.D5) have a close affinity to

the restrictions required for the MTSM in Section 5.1 to satisfy the hypothesis that macro variables

have no predictive power for excess bond returns unconditionally (under the P-measure). Following

Duffee (2007), we refer to this hypothesis as the “general” null hypothesis (GNH). To proceed, we

first introduce such restrictions, termed “macro-independence” restrictions in this study.

IA.D.2 “Macro-Independence” Restrictions

Consider the MTSM in Section 5.1. Given that the expected excess return on an m-period bond

from t to t+ j is

Et

(
rx

(m)
t,t+j

)
= constant + ψ′m,jXt, (IA.D6)

where ψm,j = mB′m − (m− j)B′m−j(ΦP)j − jB′j ,

the GNH implies that the last N -L columns of the model-implied matrix ψm,j are entirely zero,

regardless of bond maturity m or return horizon j. How to implement such restrictions in the

model depends on j. Recall that, in our empirical analysis, predictive regressions use annual excess

returns sampled at the monthly frequency, while MTSMs are estimated with monthly observations.

Let λ1 = [λ1p, λ1f ] in Eq. (9). If j = 1 (month), then setting λ1f to zero prevents macro factors

from affecting expected one-period excess returns. Without loss of generality, we allow all L yield

curve factors Pt to drive variations in bond risk premia. As a result,

ψm,1 = −(m− 1)B′m−1λ1 = −(m− 1)B′m−1

[
λ1p , 0N×(N−L)

]
. (IA.D7)

Under this specification, Et (rxt,t+1) is orthogonal to the macro state vector Ft. However, Ft can still

affect longer-horizon (j > 1) excess returns because future monthly returns, {Et (rxt+i,t+i+1)}i≥1,

are not orthogonal to Ft. For instance, note that Et+1 (rxt+1,t+2) is determined by Pt+1 and

Et(Pt+1) depends on Ft. Consequently, Ft contains information about future excess annual returns.

As a result, when j > 1, to ensure the state variables determining term premia to vary inde-
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pendently of the macro factors, we specify the following P-measure dynamics of Xt:

Xt =

Pt
Ft

 =

µPp
µPf

+

 ΦP
pp 0L×(N−L)

0(N−L)×L ΦP
ff


Pt−1

Ft−1

+ Σx ε
Q
x,t. (IA.D8)

That is, the variation in Ft is independent of expected monthly bond returns at all leads and lags;

thus, even for annual excess returns, the last N -L columns of ψm,12 are constrained to be zero.

Eqs. (IA.D7) and (IA.D8) together lead to the following conditions, termed “macro-independence”

restrictions and denoted by HMI
0 , for the model to satisfy the GNH:

HMI
0 : ΦP

fp = 0, ΦQ
pf = ΦP

pf = 0, and ΦQ
ff = ΦP

ff . (IA.D9)

Let MIM (L,N ) denote the model subject to these restrictions. Unless specified otherwise, we

focus on MTSMs with N = L + 1 and Ft = Gt in the analysis that follows. For instance, model

MIM (3, 4) is used below to conduct the finite-sample inference about the GNH.

IA.D.3 VAR-based DGPs and Tests of the GNH

Note that the parameter restrictions specified in Eq. (IA.D5) are very close to the “macro-independence”

restrictions given in Eq. (IA.D9) under model MIM (3, 4). The only fundamental difference between

the VAR-based model in Eqs. (IA.D4) and (IA.D5) and model MIM (3, 4) is that the former does

not rely on the Duffie and Kan (1996) restrictions for an affine mapping from bond yields to the

yield-curve factors. However, empirically this difference is expected to have little impact on the

dynamics of expected excess returns, as matrix UM obtained from the PCA does not significantly

deviate from the loading matrix BM in Eq. (11).IA.11 Therefore, like model MIM (3, 4), the above

VAR-based model implies that term premia are time-varying and driven by yield PCs only; that is,

by construction, the macro factors Ft have no predictive power for future yields and bond returns.

As such, the VAR-based model in Eqs. (IA.D4) and (IA.D5) satisfies the GNH rather than HS1
0

stated in Section 2.2. Put differently, as macro risks are not priced at all in this VAR-based DGP,

it is not suitable for conducting tests of evidence for unspanned macro risks.

To further illustrate this point, we generate bootstrap samples using the VAR-based model and

IA.11To see this, another equivalent approach to estimating Eq. (11) is regressing the bond yields on yield PCs. While
the Duffie-Kan restrictions are not imposed in this estimation (unless the number of factors equals k − 1), the small
magnitude of measurement errors ensures that the OLS-implied loading matrix for PC 1−3,t is very close to BM if
the term structure is truly described by a no-arbitrage dynamic term structure model (Duffee 2010a).
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investigate the properties of regression statistics under the same DGP. To proceed, letting Ft be

the single SAGLasso factor Gt in the model, we estimate µp, µf ,Φpp,Φff ,Σp, and Σf with MLE

as in Section 5. Next, we generate bootstrap samples from Eqs. (IA.D4) and (IA.D5) and use a

residual bootstrap to resample the PCs and SAGLasso factor based on Eq. (IA.D5). We construct

bootstrapped yields, Y b
t , as follows:

Y b
t = UM · PC b

1−3,t + ηbt ,

where PC b
1−3,t denotes the vector of three bootstrapped PCs. Following BH, ηbt is generated from

MVN(0, σ2
ηI), where ση is set to the sample standard deviation of the fitting errors ε̂t (pooled

across maturities).IA.12 Finally, excess bond returns are calculated using bootstrapped yields.

IA.D.4 Finite Sample Analysis Using the VAR-based DGP

What if the above VAR bootstrap design is used to examine the finite-sample properties of the

regression in Eq. (1) in tests ofHS1
0 ? To answer this question, we examine finite-sample distributions

of regression statistics in testing HS1
0 :

rx
(12n)
t,t+12 = α+ β′pPC o

1−3,t + βgGt + et+12. (IA.D10)

Table IA.D1 reports the results. A comparison of panels A1–B2 of the table with their counter-

parts in Table 3 based on model SM (2, 3) reveals that the VAR-based bootstrap still understates

the size distortions in the regression in Eq. (IA.D10). Indeed, the 5% critical values implied by

model SM (2, 3) are more than twice as great as those implied by the VAR-based model for most

statistics/maturities. The discrepancy between these two DGPs is substantial in both in-sample

and out-of-sample analyses and especially glaring in the coefficients of determination. For instance,

panel A1 of Table IA.D1 indicates that the upper bound of the 95% confidence interval for ∆R2

is around 3.3%, but this upper bound is merely comparable to the median of the SM (2, 3)-implied

distributions. More precisely, the VAR-based 5% critical value has a true size of up to 46%, imply-

ing that the finite-sample test based on the VAR bootstrap design would reject the null more than

eight times as often as it should.

For completeness, panels A3–B4 of Table IA.D1 report the finite-sample distributions implied

IA.12We find that replacing these simulated measurement errors with the ones bootstrapped from the actual (maturity-
specific) fitting errors has only marginal impact on the finite-sample distributions.
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by the macro-independent model MIM (3, 4). As expected, they closely resemble their VAR-based

counterparts illustrated in panels A1–B2 of the table. Namely, both MIM (3, 4) and the VAR-based

DGP differ sharply from spanned MTSMs and lead to inflated rejection rates in tests of HS1
0 .

To summarize, in our case, finite-sample tests of HS1
0 using the VAR-based DGP is actually

oversized and thus biased against the null hypothesis. In contrast, the spanned MTSM specified in

Section 5.2.2 provides a more relevant and robust test of HS1
0 in finite sample analysis.

IA.E Ibragimov-Müller Tests of Spanning Hypotheses I and II

This section conducts an alternative and robust test of HS1
0 and HS2

0 , drawing an inference about

the hypotheses based on the test developed by Ibragimov and Müller (2010; IM hereinafter).

It is known that standard heteroscedasticity and autocorrelation consistent (HAC) corrections

perform poorly in small samples. The IM test can improve the performance of these procedures by

not relying on consistency of the given variance estimator. In IM’s approach, regression coefficients

β are estimated q times on q subsets of the whole sample. IM prove that, for each coefficient

βi, the t-statistic computed from the q estimates of β̂i has approximately the same distribution

as a standard t-statistic computed from independent and zero-mean Gaussian variables. Müller

(2014a) finds that the IM test has outstanding size and power properties in the presence of strongly

autocorrelated of regression disturbances. Müller (2014b) further notes that the IM test is an

“attractive choice” for predictive regression problem and is also robust to structural breaks.

Following Müller (2014a), we divide the whole sample into q nonoverlapping consecutive blocks

of (approximately) equal length, with q = 8 or 16. Table IA.E1 reports the p-values of the resultant

t-tests of both HS1
0 and HS2

0 , for both the full and post-1984 samples. As the IM test assumes

the independence of blocks, we insert 12-month gaps between adjacent blocks in the full-sample

analysis. As such, the regression coefficients estimated from different blocks of data are arguably

independent from each other. For brevity, we report the testing results for the average excess bond

return only, which is over two- through four-year (ten-year) maturities for the 1964–2014 (1985–

2014) sample, as maturity-specific estimates for each of q sample subsets are rather noisy. While

the evidence on PC o
2,t (the “slope” factor) is consist with BH, PC o

1,t (the “level” factor) becomes

insignificant in the post-1984 sample when Zt = Ĝt (the SAGLasso factor). However, even the
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strong evidence for the predictive power of PC o
2,t is tempered when we consider HS2

0 : its p-value

skyrockets to 0.33 and 0.38 in the full and post-1984 samples, respectively. In contrast, the p-values

of Ĝt are uniformly lower than 0.05 for both HS1
0 and HS2

0 , regardless of the choice of q.

Overall, the IM tests indicate that among the five yield curve factors and the macro factor Ĝt,

the latter is the only robust predictor of future excess bond returns at the 5% significance level.

IA.F An Alternative Version of Spanning Hypothesis II

In the tests of HS2
0 conducted so far, the yield-curve factors used in the hypothesis are the first five

principal components (PCs) of the noise-uncontaminated yield curve. As mentioned in Section 2.2,

including the higher-order PCs is motivated by the notion of hidden factors à la Duffee (2011).

This section introduces and tests another version of HS2
0 that is based on an alternative set of the

yield-curve factors, the “cycle” factor (ĉf) of Cieslak and Povala (2015). As noted in Cieslak and

Povala (2015), the cycle factor is spanned (see also Cieslak 2018), as well as analogous to the single

risk premium factor in Duffee (2011) that contains a hidden component.

Cieslak and Povala (2015) propose an illustrative three-factor dynamic term-structure model

(DTSM) in which ĉf corresponds to a single “risk premium factor” denoted by xt, where xt captures

all of forecastable variation in one-year expected excess returns for bonds of all maturities. While the

Cochrane and Piazzesi (2005) factor (ĈP ) plays a similar role in the DTSM proposed in Cochrane

and Piazzesi (2008), Cieslak and Povala (2015) demonstrate that their methodology (based on

linear projections of yields on trend inflation) is more effective in recovering the variation in risk

premiums from noise-contaminated yields and, as a result, ĉf subsumes ĈP in predicting excess

bond returns. In other words, xt is analogous to Duffee (2011)’s single risk premium factor, RPt,

that determines the one-month-ahead risk premia on all bonds.IA.13 In particular, xt contains a

hidden component that cannot be detected using the cross-section of yields and that needs to be

inferred, say, with a proxy for trend inflation as done in Cieslak and Povala (2015). In this sense, xt

can be regarded as an “annual” version of RPt and, accordingly, ĉf maps to the smoothed estimate

of RPt obtained in Duffee (2011). That is, as an estimate of xt, ĉf summarizes all information on

one-year-ahead risk premia.

IA.13The state vector underlying the five-factor DTSM in Duffee (2011) consists of the first five PCs of yield innovations.
As a result, RPt is a linear combination of these five PCs.
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It follows that we can formulate an alternative version of HS2
0 using ĉf as the conditioning

variable:

HS2,cf
0 : The SAGLasso macro factor Ĝ has no additional predictive power for bond risk

premia in the presence of ĉf .

One way to test HS2,cf
0 is based on the following predictive regression of excess bond returns:

rx
(12n)
t,t+12 = α+ β′c ĉf t + β′g Ĝt + et+12. (IA.F11)

As mentioned in Section 4.4.4, we find that in this setting β̂g is highly significant—based on asymp-

totic distributions of test statistics. See Table IA.F1 for the results from both in-sample (panel A)

and out-of-sample (panel B) tests of HS2,cf
0 .IA.14

To understand finite-sample properties of the regression in Eq. (IA.F11), we extend Cieslak

and Povala (2015)’s three-factor DTSM to include the macro factor Gt, and then use this extended

model as the DGP for simulation. Note that the structure of this DGP is the same as that presented

in Section 5.3.1, except that the state vector here is rotated to Xt = (τt, r
r
t , xt, Gt), where τt denotes

trend inflation and rrt the real short rate. Following Cieslak and Povala (2015), we measure τt and

rrt by τCPIt and c
(1)
t , respectively when estimating the model, where τCPIt is a discounted moving

average of the past 10-year realized core CPI with the gain parameter of 0.99 and c
(1)
t the fitted

residual from univariate regressions of yields y
(12n)
t on τCPIt .

The bootstrap design adopted for the regression in Eq. (IA.F11), however, departs from that

discussed in Section 5.2 in two aspects. First, the entire model is presented at the annual frequency.

As such, we adopt Cieslak and Povala (2015)’s specification of one-period-ahead risk premia:

ΣΛt =


λ0τ

λ0r

02×1

+


0 0 λ1τ 0

0 0 λ1r 0

02×4

Xt (IA.F12)

This specification guarantees that xt fully determines variations in expected excess annual returns.

Second, as in Cieslak and Povala (2015), τt, r
r
t , and xt are assumed to evolve independently of each

IA.14As is the case of our out-of-sample exercises for the post-1984 sample, as described in Section 4.4.2, we use the
initial 15 years as our training sample. That is, the initial coefficient estimates are obtained based on the period from
November 1971 to October 1986. Both c̃f and G̃ are constructed recursively afterwards.
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other. It follows that the P-measure dynamics of the state variables are

Xt = µPx +



φPττ 0 0 φPτg

0 φPrr 0 φPrg

0 0 φPxx φPxg

φPxτ φPgr φPgx φPgg


Xt−1 +



σττ 0 0 στg

0 σrr 0 σrg

0 0 σxx σxg

σxτ σgr σgx σgg


εPx,t. (IA.F13)

Note that the parameter φPxg is important as it determines whether Gt has unconditional predictive

power for excess bond returns; if φPxg = 0, the model in Eq. (IA.F13) degenerates into conformity

with Duffee (2007)’s GNH. Under the specification in Eq. (IA.F12), Gt contains no conditional

predictive power when xt is controlled for, regardless of the value of φPxg.

As, by definition, the risk-premium factor xt does not affect the short rate, we specify the

following equation to complete the model:

rt = δ0 + δrr
r
t + δττt, (IA.F14)

where rt denotes the one-year yield with δr > 0 and δτ > 0.

The MTSM as represented by Eqs. (IA.F12)–(IA.F14) is estimated using zero yields with matu-

rities of one through ten years over the full sample period 1971.11–2014.12 (matching the beginning

of the sample used in Cieslak and Povala 2015). The estimated model is then used to generate

5,000 bootstrapped data samples.

Table IA.F1 summarizes the finite-sample properties of the six test statistics used that are based

on the 5,000 bootstrapped data samples, including the 95th percentile of the bootstrap distribution

(underlined as the 5% critical value in the table) and the p-value (in angle brackets) for each test

statistic. A comparison of these finite-sample critical values with those (under HS2
0 ) reported in

panels B3 and B4 of Table 3 reveals that the small-sample bias is less severe in the regression

in Eq. (IA.F11) than that in Eq. (1) specified for testing HS2
0 . Consistent with the conclusion

drawn from their asymptotic distributions, the bootstrap distributions of all statistics shown in

Table IA.F1 overwhelmingly reject the null hypothesis HS2,cf
0 —that Ĝt contains no predictive

power conditioned on ĉf t—at the 5% significance level, with the only exception of the ENC-REG

test for the 7-year bond for which the small-sample p-value is 6.6%.

To summarize, the above results of tests of the spanning hypothesis HS2,cf
0 provide further
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evidence that the SAGLasso macro factor has significant, additional predictive power for excess

bond returns conditioning on the yield curve information.

IA.G Unspanning Tests and Applications of Unspanned Models

This section focuses on unspanned MTSMs with the SAGLasso factor as the sole macro risk factor.

We formally describe the macro-unspanning hypothesis (MUH) in Section 5.3.1 and then investigate

its statistical significance as well as its economic importance in Sections 5.3.2 through IA.G.2.

Lastly, Section IA.G.3 quantifies the information content of the SAGLasso factor.

While the above test results demonstrate the empirical relevance of Gt as an unspanned macro

risk, the tests of the MUH per se are more interesting statistically than economically. On the one

hand, to be statistically legitimate, the MUH has to be formulated as Eq. (12). On the other hand,

the consensus is that, in general, macro variables hold greater promise in helping to improve a

term structure model’s time-series accuracy than its goodness-of-fit (e.g., Duffee (2011) finds that

a YTSM (5) is adequate for producing fitting errors of 6 bps). Given this insight, a more relevant

question to ask is whether using Gt as a pricing factor has any economic benefits. Put differently,

does an unspanned MTSM with Gt as its sole macro factor provide any added economic value over

an otherwise spanned model? As shown below, the answer to these questions depends on whether

MTSMs are subject to certain constraints on their model-implied Sharpe ratios.

IA.G.1 Model-Implied Sharpe Ratios

One issue not addressed in the likelihood-ratio tests considered in Section 5.3.2 (as well as in

BR) is that the MTSMs under scrutiny impose no constraints on the Sharpe ratio (SR) of bond

returns and that such “unconstrained” models may imply unrealistic SRs, as noted in Duffee

(2010) and Joslin, Singleton, and Zhu (2011; JSZ hereafter). Specifically, Duffee documents that

while the empirical benchmark for the unconditional maximum SR is 0.15∼0.20, SRs implied from

unconstrained Gaussian dynamic term structure models in his analysis are much higher than the

benchmark.

Untabulated results indicate that among the three spanned MTSMs, {SM (L,N )}3≤L≤5, con-

sidered in panel A of Table 4, even the most “reasonable” model-implied sample mean (population
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mean) of conditional maximum SRs is 0.715 (0.825) when SRs are computed with log returns;

the sample mean increases to 1.309 when SRs are computed with simple returns. Consistent with

Duffee (2010), we find that the model-implied SRs increase with the model dimension. For model

SM (5, 6), the sample mean of the maximum conditional SRs could even be higher than 1035 (for

simple returns), an obviously unplausible level.IA.15 As such, though statistically appealing, the

test results presented in panel A of Table 4 are based on misspecified models.

One way to ensure that an MTSM generates plausible SRs is to directly impose restrictions on

risk premia, say, that only the level and slope risks be priced (a restriction suggested by Duffee

2010 and implemented in Duffee 2011). Another way is to let the data decide what restrictions are

empirically relevant. We implement the latter approach by following JPS to search for the best zero

restrictions on risk premium parameters {λ0, λ1} that minimize the Bayesian information criterion

(note that Λt essentially represents SRs of bond portfolios with payoffs that track the pricing

factors). The resultant models selected by this approach (see Internet Appendix IA.C.2) all possess

the following two properties: (a) variations in expected excess bond returns are mainly driven by

two factors and, (b) the SAGLasso factor plays a significant role in both term-premium factors.

Importantly, conditional maximum SRs implied by these selected models are generally in line with

those observed empirically. For convenience, the MTSMs with the selected zero restrictions on

{λ0, λ1} are referred to as constrained MTSMs and denoted by CSM (L,N ) (CUSM (L,N )) for

spanned (unspanned) models, with L being the number of yield factors included in the model.

With model selections performed on market prices of risk, unspanned and spanned models

are no longer nested, however, and as a result, the LR test-based statistical inference made in

Section 5.3.2 no longer applies. Nonetheless, as shown below we can still measure the economic

values of the macro-unspanning restrictions imposed on constrained models.

IA.G.2 Out-of-Sample Forecasts of Bond Yields

This subsection investigates whether it is beneficial to include the SAGLasso factor as unspanned

by the yield curve in an MTSM. We consider MTSMs with and without the macro-unspanning

restrictions and examine whether these restrictions help to forecast future bond yields. We seek to

IA.15Untabulated results indicate that this problem persists in MTSMs tested by BR, in which our SAGLasso factor
is replaced with (GRO , INF ), two macro factors often used in this literature.
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quantify the effectiveness of these restrictions as forecasting tools.

We focus on six-factor models in this analysis given Duffee’s (2011) argument that five yield

factors summarize all information (in both the time series and cross section) in the yield curve.

Regardless, including at least five yield factors instead of three makes it harder to see the importance

of the macro-unspanning restrictions.

The procedure is similar to the out-of-sample analysis in Section 4.4.2. However, since recur-

sive estimation of MTSMs is computationally very costly (especially for models CSM (5, 6) and

CUSM (5, 6), which require model selection for the risk premium), our yield forecasts are formed

based on model estimates for the 1985–2007 sample. With the model parameters fixed, we refilter

yield factors using observations up to month t (≥ 2007.12) and then construct forecasts of the

T -year bond yield in month-(t+ h), where T = 0.5, 1, 3, 5, 7, 10 and h = 1, 3, 6, 12 in our empirical

analysis. The out-of-sample (test) period extends from January 2008 to December 2013.

Panel A of Table IA.G1 reports the root mean squared forecast error (RMSE) produced by

unconstrained models SM (5, 6) and USM (5, 6) for each of 24 combinations of T and h. Note

that the models deliver closely comparable forecasting performance, especially at short horizons.

This finding is not surprising, given that they should produce identical yield forecasts if PC 1−5,t is

assumed to be observed without error (see Section 4.2 of JSZ). Although our assumption that all

bonds (and portfolios) are priced imperfectly prevents us from exploiting the JSZ-type separation

of parameters in the likelihood function, the assumption allows the macro-unspanning restrictions

to affect the filtering process and thus the model estimations. As indicated by our empirical results,

this impact makes a sizable difference only at the one-year horizon, where USM (5, 6) provides more

accurate forecasts at the short end of the yield curve but is outperformed by SM (5, 6) at the long

end. Nonetheless, recall that both SM (5, 6) and USM (5, 6) generate unrealistic model-implied SRs.

Panel B of Table IA.G1 shows the results from constrained models CSM (5, 6) and CUSM (5, 6).

They too have similar forecasting performance when the forecast horizon is short with h=1,3

(month). However, when h=6 or 12, CUSM (5, 6) significantly outperforms CSM (5, 6), especially

for the 1-year and longer maturity yields. For example, when h=12, the unspanning restrictions

reduce the forecast error by as much as 30 bps for the 3-year yield or 40 bps for the 7-year yield. That

is, the improvements in forecasting performance owing to an unspanned Ĝ are much more robust

once certain zero restrictions on Λt are imposed. To decipher the discrepancy between these two
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pairs of models, we examine the model-implied P-dynamics. As discussed by JPS (in their Section

IV.B), enforcing zero restrictions on their risk premium parameters increases the persistence of

state variables. We confirm this finding by noting that the eigenvalues of ΦP
x in CUSM (5, 6) are

substantially larger than their counterparts in CSM (5, 6). This increase prevents variations in risk

premia from completely dominating short-rate expectations and makes model-implied long-dated

yield expectations more reasonable and potentially closer to the “true” yield expectations.

Taking the above findings together with the LR test results presented in Section 5.3.2, we

conclude that by making the model more parsimonious, the macro-unspanning restrictions do not

hurt the in-sample fitting and thus boost the out-of-sample performance.

IA.G.3 Forecastable Variations in Excess Returns Attributable to Gt

Having explored the unspanned nature of Gt, we quantify the information content in Gt within a

(G-based) MTSM. Specifically, we examine how much of the predictable variations in excess bond

returns can be captured by Gt and the potential role of hidden yield factors in the model. Put

differently, we examine how much information related to the bond risk premium may be lost by

excluding unspanned macro risks from term structure modeling. Note that this exercise represents

an MTSM-based version of the regression analysis conducted in Section IA.B.5.

To this end, we consider the constrained models only (because this exercise requires reasonable

model-implied moments of risk premia), and focus on the unspanned models.IA.16 We implement

models CUSM (L,N ) for L = 3, 4, 5.

IA.G.3.1 Variance Decomposition for Excess Bond Returns

We discuss the population properties of annual excess bond returns. Results reported in Ta-

ble IA.G2 cover the five-year bond only as it is closely related to the “in-four-years-for-one-year”

forward premium, as shown in the following:

Et

(
rx

(60)
t+12

)
= FP4,1

t − 4Et
(
∆y48

t+12

)
+
(
Et(y

(12)
t+48)− y(12)

t

)
.

But the results for other maturities are broadly similar.

IA.16Although the macro-unspanning restrictions tend to grant macro factors the “privilege” of retaining their contri-
butions to term premia, this is less of an issue here given that Gt is constructed after controlling for the yield curve
information. Regardless, the spanned models generate qualitatively similar results (untabulated).
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Consider the model CUSM (3, 4) first. Its model-implied unconditional mean of excess bond

returns is 2.85% (column 2), consistent with its data counterpart of 2.73% (untabulated). The

unconditional variance is 58.25 (column 3) and calculated using the following formula:

Var
(
rx

(60)
t,t+12

)
= ψ′Var(Xt)ψ + 482

[
11∑
i=0

B′48ΦiΣΣ′Φi′B48

]
+ (52 + 42 + 1)σ2

ηy ,(IA.G15)

where ψ = 60B′60 − 48B′48Φ12 − 12B′12.

Among the three terms on the right-hand side (RHS) of Eq. (IA.G15), the first one represents the

unconditional variance of the conditional expectation, which quantifies forecastable variation in the

excess bond return; the second term denotes the variance of shocks to the “true” excess return;

and the last term is the variance of the measurement error’s contribution to the observed return

shocks. Since this last term is typically small in models with N ≥ 3, the predictability of bond

returns is mainly determined by the relative magnitudes of the first two terms on the RHS.

Furthermore, how much of Var
(
rx

(60)
t,t+12

)
is forecastable depends on the conditioning informa-

tion used to forecast. If the state vector Xt itself is used, then the full-information R2 implied

by CUSM (3, 4) is 0.463 (the ratio of 27.01 in column 4 to 58.25), comparable to the regression

R2 of 0.439 reported in Table IA.B6 (column 7). The full-information R2, however, cannot be

achieved when the conditioning variables consist of the first R (≤ L) PCs of observed yields only.

An effective measure for the gap between the information contained in Xt and that in PCo1−R,t is

the following ratio of variances of these two relevant forecasts:

VRo
R =

ψ′Var(Xt|PCo1−R,t)ψ
ψ′Var(Xt)ψ

, R ≤ L. (IA.G16)

If R = 3, then CUSM (3, 4) implies a VRo
R of 71.4% (Table IA.G2, column 5 in braces); that is,

almost 30% of the information in Xt is lost if we ignore Gt and rely solely on PCo1−3,t to infer term

premia.IA.17

What happens if the first R (≤ L) PCs of the true yields are used as the conditioning variables?

We can repeat the above analysis using the following variant of Eq. (IA.G16):

VRR =
ψ′Var(Xt|PC1−R,t)ψ

ψ′Var(Xt)ψ
. (IA.G17)

Column 6 shows that VR3 is 72.9% (in braces), only slightly greater than VRo
3 (71.4%). This is

IA.17Duffee (2011) uses VRo
R to evaluate the importance of yield factors hidden from the contemporaneous term

structure and finds that PCo
1−3,t recover only 70% of the information on expected excess returns on the five-year

bond, consistent with the notion of hidden factors.
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not surprising as the cross-sectional effect of PC 1−3,t is supposedly large enough to dominate the

measurement error. Obviously, if the conditioning variables are Xt, the variance ratio is 100%

(column 9). Notice that because R = L = 3, results from CUSM (3, 4) in columns 7 and 8 are the

same as those in columns 5 and 6.

Given that model CUSM (3, 4) leaves no room for hidden yield factors, we consider the higher-

dimensional models (L > 3) next. As expected, in such cases the information loss will be higher

(than with L = 3) if the conditioning information consists of PC o
1−3,t only. As shown in column

5, VRo
3 is about 71% under CUSM (4, 5) and 65% under CUSM (5, 6) (a model that is supposed to

encompass both unspanned yield and macro factors). That is, about one-third of the information

in Xt is lost if only PC o
1−3,t are used to infer term premia under CUSM (5, 6). As before, replac-

ing PC o
1−3,t with PC1−3,t hardly reduces the information lost, with VR3 equal to 71.3% under

CUSM (4, 5) and 67.2% under CUSM (5, 6) (column 6). Note from column 7 that including higher-

order PCs of the observed yield curve, PC o
4,t and PC o

5,t, in the conditioning variables hardly helps

to dig up more information on risk premia. For instance, for CUSM (5, 6), VRo
5 = 65.1% (column

7), only slightly higher than VRo
3 = 64.9% (column 5). Again, this is because the cross-sectional

effect of higher-order PCs is too small to overwhelm the measurement error.

If we can perfectly infer the hidden factors by extracting information from yield dynamics as well

as in the cross section, we can estimate risk premia more accurately. For instance, under model

CUSM (5, 6), VR5 = 75.8% (column 8), much higher than either VR0
5 = 65.1% (column 7) or

VR3 = 67.2% (column 6). In fact, this difference between VRo
5 and VR5 suggests a wedge between

the information in observed yields and that in “true” yields, whereas there is no evidence for a

similar gap for the first three PCs, as indicated by columns 5 and 6. Nonetheless, the VR5 of 75.8%

still implies an information loss of almost 25% even in this ideal case. Given that under model

CUSM (5, 6), Gt is not spanned by PC1−6,t and that the five yield factors presumably summarize

all (time-series and cross-sectional) information on the yield side (Duffee 2011), a more reasonable

implication of the result that VR5 = 75.8% is the following: The information loss is at least about

one-quarter when Gt is excluded from return predictors, even though they include PC1−5,t.

We use the phrase “at least” for two reasons: First, the variance ratio is computed under the

assumption that PC 1−5,t are perfectly observable. In practice, however, econometricians have to

perform filtering analysis to infer PC4−5,t. Duffee (2011) documents that the Kalman filter recovers
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only two-thirds of the information in the true state vector for monthly excess returns (and about

82% of that for annual excess returns in an earlier version of the paper). In contrast, measurement

error has little impact on factor Gt. Second, the period 1985–2007 sample is special in the sense

that the fraction of the total variance attributable to macro-driven variations is particularly low. If

the estimation sample is extended to either 1964 or 2014, the model-implied variance ratio would

drop below 67% (untabulated). Once these two facts are taken into account, the results from model-

based risk premium decomposition are expected to be close to the test results of HS2
0 (columns

14–17 in Table IA.B6)—namely, with respect to the state vector Xt = (PC 1−5,t, Gt), the SAGLasso

factor accounts for almost half of the predictable variations in excess bond returns.

It is worth emphasizing that risk premium accounting based on variance ratios is analogous

to the variance decomposition (in the context of reduced-form VARs), of which the results are

sensitive to the order of state factors chosen for identification. The projection of Gt on PC 1−L,t in

VRL maximizes the explanatory power of yield PCs (Bikbov and Chernov 2010). This point can

be illustrated by changing the order of state factors and calculating the following variance ratio:

VR3+G =
ψ′Var(Xt|X\Ht )ψ

ψ′Var(Xt)ψ
, (IA.G18)

where X
\H
t = (PC 1−3,t, Gt). Results in column 9 indicate that under CUSM (5, 6), the first three

PCs plus the SAGLasso factor capture 97.9% of forecastable variation in excess bond returns.

Although this finding does not necessarily mean that hidden factors are unimportant in return

prediction in this case, it does imply that, compared to ignoring hidden yield factors (as shown

in column 9), excluding unspanned macro risks (associated with Gt, as shown in column 8) bears

more serious economic consequences in the inference of term premia.

IA.G.3.2 Calculations of Variance Ratios

This subsection provides details on the calculations of variance ratios used in Section IA.G.3.1.

All the calculations are based on MTSMs specified in either Section 5.2 (for spanned models) or

Section IA.G (for unspanned ones).

Consider VRo
R, the variance ratio defined in Eq. (IA.G16) that focuses on the forecast of excess

bond returns based on the first R (≤ L) PCs of observed yields. Recall that by definition, the first
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L PCs are given by

PC o
1−L,t = WR,MY

o
t = WR,MAM +WR,MB′MXt +WR,M ηt,

where WR,M is an R× k loading matrix, which is equal to the transpose of UR,M in Eq. (IA.D4).

Below subscripts are suppressed for simplicity of notations. It follows that the expectation of the

true state factor Xt conditioned on these PCs equals

E(Xt|PC o
1−R,t) = E(Xt) + Var(Xt)BW ′Var(PC o

1−R,t)
−1PC o

1−R,t,

where the variance of PC o
1−R,t is

Var(PC o
1−R,t) = WB′Var(Xt)BW +WW ′σ2

η.

The variance of E(Xt|PC o
1−R,t) is

Var(Xt|PC o
1−R,t) = Var(Xt)BW ′Var(PC o

1−R,t)
−1WB′Var(Xt).

Next, consider VRR, the variance ratio specified in Eq. (IA.G17) that concerns the inference of

risk premium based on the first R PCs of true yields. Recall that these PCs, PC 1−R,t, constitute

a segment of the state vector Xt. Denoting the remaining N -R state factors by X
\R
t , we have

E(Xt|PC 1−R,t) =

 PC 1−R,t

E(X
\R
t ) + CV−1PC 1−R,t

 , and

Var(Xt|PC 1−R,t) =

V C′

C CV−1C′

 ,
where V = Var(PC 1−R,t) and C = Cov(X

\R
t ,PC 1−R,t).

30



Table IA.A1: Properties of Principal Components of Observed Yield Curves

Panel A reports correlations between principal components (PCs) of observed yields and filtered
estimates of yield PCs, denoted by PC o

i and PC i, respectively, where i = 1, . . . , 5. Population
correlations are computed by simulating 100,000 months of bond yields. The 95% confidence
intervals for the sample correlations, as displayed in parentheses, are derived from 5,000 simu-
lations with the same number of observations as in the data sample. The yield maturities in all
simulations are three months and one through five years. Panel B reports results from regres-
sions of the return to an n-year zero-coupon bond from month t to month t+12 less the month-t
yield on a one-year bond on the first five PCs of observed yields, PC o

1−5 = (PC o
1, . . . ,PC o

5). Test
statistics are computed using either the Hansen and Hodrick (1980) GMM covariance estimator
(in parentheses) or the Newey and West (1987) HAC covariance estimator (in brackets). The
row labeled “R2 (Table 2)” copies the R2 values from regressions of excess returns on filtered
estimates of the first five PCs, reported in Table IA.B5 (columns 10 through 13). The ∆R2

measure represents the differences between R2 values in Panel B and R2 (Table 2). The last
row in panel B reports the percentage decrease in the R2. The sample spans the period January
1964 to December 2014.

(1) (2) (3) (4) (5) (6) (7)

Panel A: Corr(PC i,t,PC o
i,t) Panel B: Predictive regressions of excess returns

to an n-year zero-coupon bond on PC o
1−5,t

Bond maturity n

Population Sample 2 3 4 5

PC o
1,t 0.9999 0.9998 3.526 3.031 2.080 0.422

[0.9998 0.9999] (1.116) (0.529) (0.264) (0.043)

[1.266] [0.601] [0.300] [0.048]

PC o
2,t 0.9905 0.9902 -0.688 -1.330 -2.038 -2.621

[0.9885 0.9916] (-3.650) (-3.674) (-3.961) (-4.105)

[-4.021] [-4.092] [-4.431] [-4.601]

PC o
3,t 0.9612 0.9818 0.784 1.011 1.485 1.688

[0.9787 0.9845] (1.233) (0.920) (1.041) (0.978)

[1.384] [1.034] [1.156] [1.079]

PC o
4,t 0.7233 0.7595 -1.956 -2.836 -2.798 -0.961

[0.7238 0.7912] (-1.702) (-1.295) (-0.910) (-0.244)

[-1.842] [-1.418] [-1.005] [-0.271]

PC o
5,t 0.2125 0.6107 4.060 10.521 15.004 14.677

[0.5584 0.6581] (2.693) (4.536) (5.636) (4.358)

[2.363] [3.620] [4.074] [3.151]

R2 0.205 0.215 0.241 0.228

R2 (Table IA.B5) 0.221 0.233 0.255 0.245

∆R2 -0.016 -0.018 -0.014 -0.017

Percentage decrease in R2 -7.24% -7.73% -5.49% -6.94%
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Table IA.B1: Correlation between Yield Curve and New Macro Factors

This table reports the Pearson correlation coefficients between four newly constructed
macroeconomic factors and five yield-curve factors. The four macroeconomic factors
include employment (ĝ1t), housing (ĝ2t), inflation (ĝ3t), and the aggregate SAGLasso
factor (Ĝt) constructed in Section 4.2. The five yield curve factors include the first three
principal components (PCs) of observed bond yields, {PC o

i,t, i = 1, 2, 3}, and the filtered
higher-order PCs of noise-uncontaminated yields, PC 4,t and PC 5,t. The sample spans
the period January 1964 to December 2014.

Ĝt Ĝ1t Ĝ2t Ĝ3t PC o
1,t PC o

2,t PC o
3,t PC 4,t

Ĝ1t 0.620

Ĝ2t 0.527 0.577

Ĝ3t 0.524 0.467 0.351

PC o
1,t −0.100 −0.226 −0.167 −0.199

PC o
2,t −0.352 −0.222 −0.073 −0.270 −0.006

PC o
3,t 0.167 0.239 0.222 0.196 0.018 0.003

PC 4,t −0.094 −0.031 −0.106 0.021 −0.000 0.013 0.044

PC 5,t −0.021 −0.027 −0.282 0.284 0.024 0.008 −0.011 0.092
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Table IA.B2: Predictive Power of Three SAGLasso Group Factors

The return to an n-year zero-coupon bond from month t to month t + 12 less the month-t yield
on a one-year bond is regressed on ĝ1t, ĝ2t, and ĝ3t, the group factors, constructed in Section 4.2,
that represent employment, housing and inflation, respectively, for n = 2, . . . , 5. Results reported
in panel A are based on the January 1964–December 2014 sample, including those from both
univariate (panel A1) and multivariate predictive regressions (panel A2). Results reported in
panel B are based on the January 1952–December 2014 sample, where only the employment
factor is considered (because of data limitations) and constructed using this longer sample (ĝ∗1t).
In-sample results from regressions on ĝ∗1t are shown in panel B1 and out-of-sample (OOS) results
based on g̃∗1t are reported in panel B2. Test statistics are computed using either the Hansen and
Hodrick (1980) GMM covariance estimator (in parentheses) or the Newey and West (1987) HAC
covariance estimator (in brackets). The ENC-REG statistic denotes the OOS t-statistic proposed
by Ericsson (1992), whose 95th percentile of the asymptotic distribution is Φ−1 = 1.645. The
row labeled “ENC-NEW” reports a variant of the ENC-REG statistic proposed by Clark and
McCracken (2001); their simulation shows that the 95% critical value is around 1.584 for testing
one additional predictor. Both tests share the same null hypothesis that the benchmark model
encompasses the unrestricted model with excess predictors. The R2

oos statistic denotes the OOS
R2 of Campbell and Thompson (2008).

maturity n
2 3 4 5 2 3 4 5(year)

Panel A: Sample period 1964–2014

Panel A1: Univariate Regressions Panel A2: Multivariate Regressions

ĝ1t 0.828 1.526 2.082 2.568 0.942 1.401 1.744 2.062

(3.796) (4.149) (4.272) (4.545) (2.850) (3.040) (3.038) (3.165)

[4.237] [4.594] [4.689] [4.948] [3.107] [3.301] [3.280] [3.401]

R2 0.220 0.222 0.213 0.211

ĝ2t 0.643 1.162 1.631 2.051 0.722 0.968 1.223 1.461

(2.608) (2.861) (3.178) (3.364) (1.965) (2.052) (2.215) (2.321)

[2.969] [3.249] [3.589] [3.786] [2.141] [2.236] [2.413] [2.528]

R2 0.143 0.139 0.141 0.149

ĝ3t 0.723 1.358 1.872 2.222 0.847 1.249 1.574 1.763

(3.096) (3.075) (3.023) (2.875) (2.544) (2.534) (2.486) (2.358)

[3.449] [3.431] [3.380] [3.215] [2.754] [2.748] [2.698] [2.555]

R2 0.168 0.176 0.172 0.173 0.404 0.431 0.420 0.417

Panel B: Sample period 1952–2014

Panel B1: In-Sample Regressions Panel B2: g̃∗1t vs. constant (OOS)

ĝ∗1t 0.751 1.397 1.932 2.390

(4.161) (4.524) (4.767) (5.084) ENC-REG 3.329 3.600 3.719 3.991

[4.665] [5.025] [5.227] [5.525] ENC-NEW 136.93 134.56 127.99 125.341

R2 0.206 0.213 0.211 0.211 R2
oos 0.155 0.164 0.166 0.169
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Table IA.B3: Unspanned Variation in SAGLasso Group Factors

This table reports results from linear projections of each of the three SAGLasso group macro factors
{ĝit, 1 ≤ i ≤ 3} onto the first R principal components (PCs) of the yield curve (PCo1−R,t), where
R = 3 (panel A) or 6 (panel B) and the group factors are the employment (ĝ1t), housing (ĝ2t),
and inflation (ĝ3t) factors. Columns 3 and 5 show the regression R2s, and in brackets beneath
are reported 95% confidence intervals based on 5,000 artificial samples simulated from a six-factor
constrained term structure model with spanned macro risks. The state vector of the model, denoted
by CSM (3, 6)group and specified in Section IA.G.1, includes three yield curve factors (the first three
PCs) and three macro factors, ĝ1t, ĝ2t, and ĝ3t. Column 2 indicates whether the three macro
variables are assumed to be measured with errors in the estimation of model CSM (3, 6)group.
Columns 4 and 6 report the first-order serial correlation of regression residuals.

(1) (2) (3) (4) (5) (6)

Panel A: Panel B:

Dependent
variable

Macro
Measure-
ment Error

Regressions of ĝit on PCo
1−3,t Regressions of ĝit on PCo

1−6,t

R2 AR(1) of residuals R2 AR(1) of residuals

ĝ1t 0.116 0.125

No [0.148 0.770] [0.206 0.809]

Yes [0.140 0.773] 0.951 [0.201 0.814] 0.948

ĝ2t 0.082 0.119

No [0.144 0.816] [0.171 0.845]

Yes [0.137 0.802] 0.960 [0.164 0.829] 0.946

ĝ3t 0.106 0.123

No [0.152 0.708] [0.219 0.766]

Yes [0.145 0.697] 0.903 [0.216 0.753] 0.893
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Ĝ

r
e
v
,l
a
g

t

m
a
tu

ri
ty
n

2
3

4
5

2
3

4
5

2
3

4
5

(y
ea

r)

P
a
n
el

A
1
:

In
-s

a
m

p
le

P
a
n
el

B
1
:

In
-s

a
m

p
le

P
a
n
el

C
1
:

In
-s

a
m

p
le

C
o
eff

.
o
n
F
t

0
.7

2
4

1
.4

7
3

2
.1

8
1

2
.7

9
2

1
.0

3
9

1
.9

9
3

2
.8

3
2

3
.5

4
2

1
.1

3
5

2
.1

5
0

3
.0

3
7

3
.8

0
7

(4
.2

2
7
)

(4
.9

3
2
)

(5
.8

0
4
)

(6
.5

5
4
)

(5
.7

8
0
)

(6
.3

5
7
)

(6
.7

1
5
)

(7
.0

0
9
)

(6
.0

2
3
)

(6
.4

1
2
)

(6
.6

8
1
)

(7
.1

0
2
)

[4
.6

4
1
]

[5
.3

9
0
]

[6
.3

1
9
]

[7
.0

7
4
]

[6
.2

1
5
]

[6
.8

0
2
]

[7
.1

9
1
]

[7
.5

1
3
]

[6
.5

4
7
]

[6
.9

4
6
]

[7
.1

8
3
]

[7
.5

9
5
]

R
2

0
.1

6
8

0
.2

0
7

0
.2

3
4

0
.2

5
0

0
.3

4
7

0
.3

7
9

0
.3

9
4

0
.4

0
2

0
.4

1
4

0
.4

4
1

0
.4

5
3

0
.4

6
4

P
a
n
el

A
2
:

O
u
t-

o
f-

sa
m

p
le

P
a
n
el

B
2
:

O
u
t-

o
f-

sa
m

p
le

P
a
n
el

C
2
:

O
u
t-

o
f-

sa
m

p
le

E
N

C
-R

E
G

2
.6

6
0

3
.3

3
6

4
.1

3
6

5
.1

0
4

3
.8

6
7

4
.9

7
5

5
.9

3
3

7
.2

6
6

4
.3

0
8

5
.2

1
7

5
.6

4
7

6
.5

5
8

E
N

C
-N

E
W

1
1
5
.9

6
1
3
7
.0

6
1
6
2
.5

9
1
7
3
.7

1
1
5
9
.7

8
1
8
2
.1

1
2
0
7
.9

4
2
1
9
.6

7
2
0
4
.6

4
2
3
5
.3

4
2
5
3
.8

1
2
6
2
.2

1

R
2 o
o
s

0
.0

5
1

0
.1

1
2

0
.1

8
6

0
.2

2
5

0
.1

1
8

0
.2

0
0

0
.2

7
4

0
.3

1
4

0
.1

2
3

0
.2

3
8

0
.2

9
4

0
.3

2
6

35



T
a
b

le
IA

.B
5
:

In
-S

a
m

p
le

T
e
st

s
o
f

S
p

a
n

n
in

g
H

y
p

o
th

e
se

s
I

a
n

d
II

:
1
9
6
4
–
2
0
1
4

T
h
e

re
tu

rn
to

a
n
n

-y
ea

r
ze

ro
-c

o
u
p

o
n

b
o
n
d

fr
o
m

m
o
n
th
t

to
m

o
n
th
t

+
1
2

le
ss

th
e

m
o
n
th

-t
y
ie

ld
o
n

a
o
n
e-

y
ea

r
b

o
n
d

is
re

g
re

ss
ed

re
sp

ec
ti

v
el

y
o
n

(i
)

th
e

fi
rs

t
th

re
e

p
ri

n
ci

p
a
l

co
m

p
o
n
en

ts
(P

C
s)

o
f

o
b
se

rv
ed

b
o
n
d

y
ie

ld
s
P
C

o 1
−

3
,t

(c
o
lu

m
n
s

2
-5

);
(i

i)
P
C

o 1
−

3
,t

a
n
d

th
e

S
A

G
L

a
ss

o
m

a
cr

o
fa

ct
o
r
Ĝ
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Table IA.C1: Estimates of Parameters on the Market Price of Risk

This table reports the maximum likelihood estimates of parameters λ0 and λ1 that govern
bond risk premia in an N -factor constrained, spanned macro-finance term structure model
(MTSM) as specified and denoted CSM (L,N ) in Section IA.G.1. The underlying state

variables include the SAGLasso macro factor, Ĝ, constructed in Section 4.1 and the first
L principal components (PCs) of bond yields, PC 1−L = (PC 1, . . . ,PCL). The three
MTSMs considered include CSM (3, 4) (panel A), CSM (4, 5) (panel B), and CSM (5, 6)
(panel C). The one-period risk premium is as specified in Eq. (13): ΣΛt = λ0 + λ1Xt =

λ0 + λ1 · (PC 1−L,t, Ĝt)
′. Zero entries of λ0 and λ1 reflect our model selection outcome.

Values in parentheses are standard errors computed using Monte Carlo simulations.

State
variables

λ0

λ1 (N ×N )

λ1(·,N ) λ1(·, 1) · · · λ1(·, 5)

Ĝt PC 1,t PC 2,t PC 3,t PC 4,t PC 5,t

Panel A: Model CSM (3, 4)

PC 1,t 0.013 -6.11e-04 -0.054 -0.313 0

(0.002) (8.97e-05) (0.016) (0.087)

PC 2,t 0.002 -1.45e-04 0 0 -0.458

(9.31e-04) (7.12e-05) (0.0143)

PC 3,t 0 0 0 0 0

Ĝt -0.278 -0.159 0.093 0 0

(0.152) (0.081) (0.035)

Panel B: Model CSM (4, 5)

PC 1,t 0.018 -8.13e-04 -0.049 -0.152 0 0

(0.003) (9.04e-05) (0.007) (0.060)

PC 2,t 0.002 -1.32e-04 0 -0.031 -0.129 0.140

(0.001) (9.13e-05) (0.035) (0.139) (0.148)

PC 3,t 0 0 0 0 0 0

PC 4,t 0 0 0 0 0 0

Ĝt 0 0 -0.633 0 0 -8.77

(0.243) (4.871)

Panel C: Model CSM (5, 6)

PC 1,t 0.029 -6.47e-04 -0.048 -0.173 0 0 -0.708

(0.003) (8.76e-05) (0.009) (0.076) (0.259)

PC 2,t 0 -2.60e-04 0 0 -0.207 0.098 0

(9.26e-05) (0.102) (0.115)

PC 3,t 0 0 0 0 0 0 0

PC 4,t 0 0 0 0 0 0 0

PC 5,t 0 0 0 0 0 0 0

Ĝt -0.646 0 0 0 0 0 0

(0.084)
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Table IA.D1: Finite-Sample Properties of Statistics in Testing Spanning Hypothe-
sis I under a VAR-based Data-Generating Process

This table presents results based on finite-sample distributions of the statistics that are involved in tests of
Spanning Hypotheses I stated in Section 2.2. The analysis is based on 5,000 bootstrapped samples generated from
the reduced-form VAR described in Eqs. (IA.D4) and (IA.D5) (panels A1 through B2) or from the macro-finance
term structure model MIM (3, 4) (panels A3 through B4) that satisfies the “macro-independence restrictions” given
in Eq. (IA.D9). The length of each bootstrapped sample is set to be consistent with either the full sample (panel
A) or the post-1984 subsample (panel B). Test statistics considered include those computed using the Hansen and
Hodrick (1980) GMM covariance estimator (HH), the Newey and West (1987) HAC covariance estimator (NW)
with 18 lags, the out-of-sample ENC-REG test of Ericsson (1992), or the out-of-sample ENC-NEW test of Clark
and McCracken (2001). For each test statistics, the 95th percentile of the bootstrap distribution is reported as
the 5% critical value, and the p-values (in angle brackets) are the frequency of bootstrap replications in which
the test statistics are at least as large as the statistic in the data. The “∆R2” and “∆R2

oos” measures denote the
incremental R2 and out-of-sample R2 of Campbell and Thompson (2008), respectively.

Panel A: Full sample, 1964–2014 Panel B: Subsample, 1985–2014

maturity
2 3 4 5 2 5 7 10(year)

Panel A1: In-sample based on VAR Panel B1: In-sample based on VAR

HH 1.872 1.889 1.883 1.885 1.999 1.965 2.013 2.055

〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉
NW 1.984 1.997 1.986 1.997 2.031 2.015 2.039 2.059

〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉
∆R2 0.032 0.033 0.033 0.034 0.036 0.037 0.037 0.035

〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉

Panel A2: Out-of-sample based on VAR Panel B2: Out-of-sample based on VAR

ENC-REG 1.784 1.747 1.752 1.753 2.002 2.102 2.019 2.013

〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.008〉 〈0.001〉 〈0.001〉 〈0.001〉
ENC-NEW 10.711 11.286 11.676 11.950 6.688 6.758 6.604 6.506

〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉
∆R2

oos 0.031 0.031 0.029 0.029 0.047 0.048 0.048 0.047

〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉

Panel A3: In-sample based on MIM (3, 4) Panel B3: In-sample based on MIM (3, 4)

HH 1.888 1.921 1.912 1.939 1.994 2.001 2.030 2.003

〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉
NW 1.999 2.021 2.043 2.041 2.046 2.027 2.041 2.039

〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉
∆R2 0.032 0.033 0.033 0.033 0.039 0.039 0.038 0.039

〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉

Panel A4: Out-of-sample based on MIM (3, 4) Panel B4: Out-of-sample based on MIM (3, 4)

ENC-REG 1.749 1.716 1.729 1.756 1.870 1.995 2.057 2.033

〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.007〉 〈0.002〉 〈0.003〉 〈0.001〉
ENC-NEW 11.236 11.217 11.101 11.424 6.313 6.326 6.361 6.313

〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉
∆R2

oos 0.030 0.030 0.030 0.030 0.048 0.051 0.053 0.052

〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉
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Table IA.E1: Ibragimov-Müller Test of Spanning Hypotheses I and II

The average return to zero-coupon bonds from month t to month t+ 12 less the month-t yield
on a one-year bond is regressed on either PC o

1−3,t and Ĝt for Spanning Hypothesis I (HS1
0 )

or PC 1−5,t and Gt for Spanning Hypothesis II (HS2
0 ), where PC o

1−3,t denotes the first three
principal components (PCs) of observed bond yields; PC 1−5,t the filtered first five PCs of noise-

uncontaminated yields; and Ĝt the SAGLasso single factor. All reported quantities are the
p-values for the Ibragimov-Müller (2010) test of the individual significance of the coefficients.
The dependent variable is the excess return averaged over 2- through 5-year (10-year) bond
maturities in regressions over the full sample period 1964–2014 (the post-1984 subsample). In
the full-sample analysis, each block is constructed such that they are 12 months apart from each
other.

Spanning Hypotheses Tested

HS1
0 HS2

0 HS1
0 HS2

0

Full sample, 1964–2014 Subsample, 1985–2014

q (# of blocks) q = 8 q = 16 q = 8 q = 16 q = 8 q = 16 q = 8 q = 16

PC o
1,t(PC 1,t) 0.039 0.001 0.006 0.003 0.219 0.417 0.001 0.001

PC o
2,t(PC 2,t) 0.016 0.009 0.327 0.047 0.020 0.006 0.036 0.379

PC o
3,t(PC 3,t) 0.162 0.354 0.309 0.615 0.037 0.647 0.536 0.743

PC 4,t 0.186 0.961 0.278 0.942

PC 5,t 0.170 0.107 0.002 0.002

Ĝt 0.009 0.018 0.004 0.014 0.044 0.049 0.015 0.019
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Table IA.F1: Tests of An Alternative Version of Spanning Hypotheses II

This table presents asymptotic and finite-sample results from tests of an alternative version of
Spanning Hypothesis II, denotedHS2,cf

0 , that states that the SAGLasso macro factor (Section 4.2)
has no additional predictive power for future excess bond returns, conditional on the “cycle”
factor of Cieslak and Povala (2015). The tests of HS2,cf

0 are based on the following regression,
as specified in Eq. (IA.F11):

rx
(12n)
t,t+12 = α+ β′c ĉf t + β′g Ĝt + et+12,

where rx
(12n)
t,t+12 is the excess return to an n-year zero-coupon bond from month t to month t+ 12,

for n = 2, 5, 7, 10; ĉf t denotes the cycle factor; and Ĝt the SAGLasso macro factor. For the in-
sample results (panel A), t-statistics are computed using either the Hansen and Hodrick (1980)
GMM covariance estimator (in parentheses) or the Newey and West (1987) HAC covariance
estimator (in brackets). Out-of-sample tests considered (panel B) include the “ENC-REG” test
of Ericsson (1992) and the “ENC-NEW” test proposed by Clark and McCracken (2001). The
∆R2 and ‘∆R2

oos measures denote the incremental R2 and out-of-sample R2 of Campbell and

Thompson (2008), respectively, due to augmenting univariate regressions of rx
(12n)
t,t+12 on ĉf t with

Ĝt as in the above equation. The sample spans the period November 1971–December 2014. To
obtain the finite-sample distributions of the aforementioned six statistics, 5,000 bootstrapped
samples are generated from the term structure model specified in Eqs. (IA.F12)–(IA.F14) in
Section IA.F. For each set of test statistics, the 95th percentile of the bootstrap distribution is
reported and underlined as the 5% critical value, and the p-values (in angle brackets) are the
frequency of bootstrap replications in which the test statistics are at least as large (small) as the
statistic in the data.

maturity
2 5 7 10 2 5 7 10(year)

Panel A: In-sample under HS2,cf
0 Panel B: Out-of-sample under HS2,cf

0

Ĝt 0.688 2.491 3.376 4.153

HH (4.257) (4.994) (4.537) (4.367) ENC-REG 1.917 3.099 3.620 4.513

(1.964) (2.121) (2.601) (2.890) (1.617) (2.675) (3.837) (4.067)

〈0.001〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.033〉 〈0.026〉 〈0.066〉 〈0.029〉
NW [4.684] [5.506] [4.953] [4.735] ENC-NEW 41.321 77.762 80.203 77.102

[1.872] [2.120] [2.588] [2.857] [1.374] [4.429] [9.080] [10.746]

〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉 〈0.000〉
∆R2 0.132 0.144 0.131 0.124 ∆R2

oos 0.053 0.143 0.132 0.103

(0.011) (0.032) (0.062) (0.072) (0.010) (0.033) (0.065) (0.075)

〈0.000〉 〈0.000〉 〈0.000〉 〈0.001〉 〈0.000〉 〈0.000〉 〈0.001〉 〈0.009〉
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Table IA.G2: Properties of Annual Excess Returns for Five-Year Bonds Implied
by Term Structure Models with Unspanned Macro Risks

This table presents the model-implied population moments of unconditional and condi-
tional excess returns on a five-year bond, based on the macro-finance term structure model
CUSM (L,N ) specified in Section IA.G.1. Model CUSM (L,N ) is an N -factor model with
unspanned macro risks and “zero restrictions” imposed on risk premium parameters, whose
underlying state vector Xt = (PC 1−L,t, Gt), where PC 1−L,t represent the first L principal
components (PCs) of the true yields and Gt the (unspanned) SAGLasso macro factor. The
last six columns quantify the variance of true conditional expected excess returns attributable
to time variation in the true state vector Xt (column 4), the first three PCs of observed yields
(column 5), the first three PCs of true yields (uncontaminated by measurement errors) (column
6), the first L PCs of observed yields (column 7), the first L PCs of true yields (column 8),
and the first three yield PCs plus the SAGLasso factor Gt (column 9), respectively. For each
of the last five columns, their ratios to the full-information variance (column 4)—the variance
ratios “VR”—are reported in braces. The R2 reported for each of the last three columns is
their ratios to the total variance (column 3). The sample period extends from January 1985
to December 2007.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

L Mean
Total

Variance

Variance of conditional expectation based on

Full info PC o
1−3,t PC 1−3,t PC o

1−L,t PC 1−L,t PC 1−3,t+Gt

3 2.85 58.25 27.01 19.26 19.70 19.26 19.70 27.01

VR {0.714} {0.729} {0.714} {0.729} {1.000}
R2 33.1% 33.8% 46.4%

4 2.53 63.13 30.34 21.47 21.62 22.41 23.29 29.76

VR {0.708} {0.713} {0.739} {0.768} {0.965}
R2 35.5% 36.9% 47.2%

5 2.50 67.37 33.05 21.45 22.21 21.50 25.05 32.36

VR {0.649} {0.672} {0.651} {0.758} {0.979}
R2 31.9% 37.2% 48.1%
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Figure IA.B1: Predictive R2 of Macroeconomic Factors Based on Different Lags

This figure depicts the in-sample and out-of-sample R2 from bond return predictions with single
macroeconomic factors. Macroeconomic factors are constructed from 131 macro variables, along
with 0, 3, 6, 9, or 12 of their lags. The sample spans the period January 1964 to December 2014.

Panel A: In-sample R-squared

2-year bond 5-year bond
0

0.1

0.2

0.3

0.4

Panel B: Out-of-sample R-squared
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